Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moderne Werkstoffe nach antikem Muster

24.07.2008
In der islamischen Architektur finden sich Ornamente, die streng geordnet, aber nicht periodisch sind. Solche Strukturen treten auch in bestimmten Materialien, sogenannten Quasikristallen auf.

In einem Lasergitter mit quasikristalliner Struktur haben Physiker der Universität Stuttgart und des Max-Planck-Instituts für Metallforschung nun eine Lage von Kolloidteilchen, winzigen Plastikkügelchen, gefangen. Dabei hing das Muster, das die Teilchen formten, von der Stärke des Lichtgitters ab.

Bei mittlerer Laserintensität beobachteten die Forscher zu ihrer eigenen Überraschung ein Muster, das einer sogenannten Archimedischen Kachelung ähnelt und sowohl kristalline als auch quasikristalline Elemente vereint. Da sich Quasikristalle und Kristalle in ihrem physikalischen und chemischen Verhalten deutlich unterscheiden, ist zu vermuten, dass die neue Phase interessante und bislang unbekannte Eigenschaften besitzt. Über die Entdeckung berichtet die Zeitschrift Nature in ihrer Ausgabe vom 24. Juli 2008.*)

Wer versucht, ein Badezimmer mit fünfeckigen Kacheln zu fliesen, wird die Wand nicht lückenlos bedecken können. Das gelingt nur mit dreieckigen, viereckigen oder sechseckigen Fliesen. Lange schien es, als halte sich auch die Natur an dieses Prinzip. Im Jahr 1984 jedoch berichtete der israelische Physiker Dan Shechtmann erstmals über fünfzählige Kristalle. Die Oberflächen solcher Quasikristalle lassen sich aus Kacheln unterschiedlicher Form - darunter auch fünfeckigen - zusammensetzen. Nun haben Physiker der Universität Stuttgart und des Max-Planck-Instituts für Metallforschung Strukturen entdeckt, die kristallin und quasikristallin zugleich sind.

Die Forscher haben durch Überlagerung von fünf Laserstrahlen ein Lichtgitter mit quasikristalliner Struktur erzeugt. In den Mulden dieses Gitters fingen sie eine einzelne Lage drei Mikrometer großer, in Wasser schwebender Kunststoffkügelchen, die sich mit einem Mikroskop direkt beobachten lassen. Bei hohen Intensitäten und entsprechend tiefen Potenzialmulden zwang das Lichtgitter die Kügelchen in eine quasikristalline Ordnung mit fünfeckigen, stern- und rautenförmigen Grundelementen. Bei niedrigen Intensitäten dagegen spürten die Teilchen, die negativ geladen waren, das Lichtgitter kaum. Unter diesen Bedingungen positionierten sie sich streng periodisch, wobei jedes Teilchen von sechs Nachbarn im gleichen Abstand umgeben ist. Soweit verhielten sich die Mikroteilchen nicht anders, als es die Wissenschaftler erwartet hatten.

"Überrascht hat uns dagegen eine neuartige Struktur, die wir bei mittleren Intensitäten beobachtet haben", sagt Prof. Clemens Bechinger, Leiter des 2. Physikalischen Instituts der Universität Stuttgart und Fellow des Max-Planck-Instituts für Metallforschung. Die Kunststoffkügelchen ordneten sich in einer Richtung streng periodisch wie in einem Kristall an. "Senkrecht zu dieser Richtung sind die Teilchen zwar ebenfalls geordnet, aber nicht wie in einem Kristall, sondern wie in einem Quasikristall", erklärt Doktorand Jules Mikhael. Offenbar führt der Wettstreit zwischen der Wechselwirkung der Teilchen untereinander und deren Wechselwirkung mit dem Lichtfeld dazu, dass sich eine Struktur formt, die gleichzeitig kristalline als auch quasikristalline Aspekte aufweist. Deutlich zu erkennen sind darin Bänder von Quadraten, die in nichtperiodischem Rhythmus mal von einer einzelnen und mal von einer doppelten Reihe aus gleichseitigen Dreiecken getrennt werden.

Diese Struktur ähnelt einer bestimmten Form der archimedischen Kachelung, die bereits von Archimedes erwähnt und im Jahr 1619 von Johannes Kepler vollständig beschrieben wurde. Archimedische Kacheln erfüllen zwei Bedingungen: Alle ihre Kanten sind zum einen gleich lang, egal ob es sich um Fliesen mit drei, vier oder mehr Ecken handelt. Zum anderen muss die lokale Umgebung jedes Eckpunkts, an dem Kacheln aneinanderstoßen, identisch sein. Nach diesem Bauprinzip lassen sich elf verschiedene Kachelungen konstruieren, mit denen sich Oberflächen komplett bedecken lassen. In einer davon wechseln sich Reihen aus Quadraten und gleichseitigen Dreiecken ab. "Das Muster, das wir gefunden haben, ist auf kurzen Abständen mit dieser Kachelung völlig identisch, auf größeren Längenskalen weicht es davon allerdings ab, da sich das streng periodische Archimedische Muster andernfalls nicht mit der quasiperiodischen Struktur des Lichtgitters vertragen würde", sagt Clemens Bechinger.

Da Kristalle und Quasikristalle völlig unterschiedliche Materialklassen darstellen und deutlich voneinander abweichende physikalische und chemische Eigenschaften besitzen, ist die beobachtete Mischstruktur zunächst erstaunlich. "Die Kombination kristalliner und quasikristalliner Elemente lässt erwarten, dass die von uns beobachtete Mischstruktur interessante neue Materialeigenschaften zeigt", sagt Clemens Bechinger.

Weitere Informationen bei Prof. Clemens Bechinger, 2. Physikalisches Institut,
Tel. 0711/685-65218, e-mail: c.bechinger@physik.uni-stuttgart.de
*) Originalveröffentlichung: Jules Mikhael, Johannes Roth, Laurent Helden, Clemens Bechinger: Archimedean-like tilings on decagonal quasicrystalline surfaces, in:

Nature, 24. Juli 2008, doi: 10.1038/nature07074).

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

nachricht Gefragtes Werkstoff-Knowhow: Fraunhofer LBF baut Elastomer-Forschung aus
16.11.2017 | Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBF

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Pflanzenvielfalt von Wäldern aus der Luft abbilden

Produktivität und Stabilität von Waldökosystemen hängen stark von der funktionalen Vielfalt der Pflanzengemeinschaften ab. UZH-Forschenden gelang es, die Pflanzenvielfalt von Wäldern durch Fernerkundung mit Flugzeugen in verschiedenen Massstäben zu messen und zu kartieren – von einzelnen Bäumen bis hin zu ganzen Artengemeinschaften. Die neue Methode ebnet den Weg, um zukünftig die globale Pflanzendiversität aus der Luft und aus dem All zu überwachen.

Ökologische Studien zeigen, dass die Pflanzenvielfalt zentral ist für das Funktionieren von Ökosys-temen. Wälder mit einer höheren funktionalen Vielfalt –...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

Roboter für ein gesundes Altern: „European Robotics Week 2017“ an der Frankfurt UAS

17.11.2017 | Veranstaltungen

Börse für Zukunftstechnologien – Leichtbautag Stade bringt Unternehmen branchenübergreifend zusammen

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungsnachrichten

IHP präsentiert sich auf der productronica 2017

17.11.2017 | Messenachrichten

Roboter schafft den Salto rückwärts

17.11.2017 | Innovative Produkte