Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Moderne Werkstoffe nach antikem Muster

24.07.2008
In der islamischen Architektur finden sich Ornamente, die streng geordnet, aber nicht periodisch sind. Solche Strukturen treten auch in bestimmten Materialien, sogenannten Quasikristallen auf.

In einem Lasergitter mit quasikristalliner Struktur haben Physiker der Universität Stuttgart und des Max-Planck-Instituts für Metallforschung nun eine Lage von Kolloidteilchen, winzigen Plastikkügelchen, gefangen. Dabei hing das Muster, das die Teilchen formten, von der Stärke des Lichtgitters ab.

Bei mittlerer Laserintensität beobachteten die Forscher zu ihrer eigenen Überraschung ein Muster, das einer sogenannten Archimedischen Kachelung ähnelt und sowohl kristalline als auch quasikristalline Elemente vereint. Da sich Quasikristalle und Kristalle in ihrem physikalischen und chemischen Verhalten deutlich unterscheiden, ist zu vermuten, dass die neue Phase interessante und bislang unbekannte Eigenschaften besitzt. Über die Entdeckung berichtet die Zeitschrift Nature in ihrer Ausgabe vom 24. Juli 2008.*)

Wer versucht, ein Badezimmer mit fünfeckigen Kacheln zu fliesen, wird die Wand nicht lückenlos bedecken können. Das gelingt nur mit dreieckigen, viereckigen oder sechseckigen Fliesen. Lange schien es, als halte sich auch die Natur an dieses Prinzip. Im Jahr 1984 jedoch berichtete der israelische Physiker Dan Shechtmann erstmals über fünfzählige Kristalle. Die Oberflächen solcher Quasikristalle lassen sich aus Kacheln unterschiedlicher Form - darunter auch fünfeckigen - zusammensetzen. Nun haben Physiker der Universität Stuttgart und des Max-Planck-Instituts für Metallforschung Strukturen entdeckt, die kristallin und quasikristallin zugleich sind.

Die Forscher haben durch Überlagerung von fünf Laserstrahlen ein Lichtgitter mit quasikristalliner Struktur erzeugt. In den Mulden dieses Gitters fingen sie eine einzelne Lage drei Mikrometer großer, in Wasser schwebender Kunststoffkügelchen, die sich mit einem Mikroskop direkt beobachten lassen. Bei hohen Intensitäten und entsprechend tiefen Potenzialmulden zwang das Lichtgitter die Kügelchen in eine quasikristalline Ordnung mit fünfeckigen, stern- und rautenförmigen Grundelementen. Bei niedrigen Intensitäten dagegen spürten die Teilchen, die negativ geladen waren, das Lichtgitter kaum. Unter diesen Bedingungen positionierten sie sich streng periodisch, wobei jedes Teilchen von sechs Nachbarn im gleichen Abstand umgeben ist. Soweit verhielten sich die Mikroteilchen nicht anders, als es die Wissenschaftler erwartet hatten.

"Überrascht hat uns dagegen eine neuartige Struktur, die wir bei mittleren Intensitäten beobachtet haben", sagt Prof. Clemens Bechinger, Leiter des 2. Physikalischen Instituts der Universität Stuttgart und Fellow des Max-Planck-Instituts für Metallforschung. Die Kunststoffkügelchen ordneten sich in einer Richtung streng periodisch wie in einem Kristall an. "Senkrecht zu dieser Richtung sind die Teilchen zwar ebenfalls geordnet, aber nicht wie in einem Kristall, sondern wie in einem Quasikristall", erklärt Doktorand Jules Mikhael. Offenbar führt der Wettstreit zwischen der Wechselwirkung der Teilchen untereinander und deren Wechselwirkung mit dem Lichtfeld dazu, dass sich eine Struktur formt, die gleichzeitig kristalline als auch quasikristalline Aspekte aufweist. Deutlich zu erkennen sind darin Bänder von Quadraten, die in nichtperiodischem Rhythmus mal von einer einzelnen und mal von einer doppelten Reihe aus gleichseitigen Dreiecken getrennt werden.

Diese Struktur ähnelt einer bestimmten Form der archimedischen Kachelung, die bereits von Archimedes erwähnt und im Jahr 1619 von Johannes Kepler vollständig beschrieben wurde. Archimedische Kacheln erfüllen zwei Bedingungen: Alle ihre Kanten sind zum einen gleich lang, egal ob es sich um Fliesen mit drei, vier oder mehr Ecken handelt. Zum anderen muss die lokale Umgebung jedes Eckpunkts, an dem Kacheln aneinanderstoßen, identisch sein. Nach diesem Bauprinzip lassen sich elf verschiedene Kachelungen konstruieren, mit denen sich Oberflächen komplett bedecken lassen. In einer davon wechseln sich Reihen aus Quadraten und gleichseitigen Dreiecken ab. "Das Muster, das wir gefunden haben, ist auf kurzen Abständen mit dieser Kachelung völlig identisch, auf größeren Längenskalen weicht es davon allerdings ab, da sich das streng periodische Archimedische Muster andernfalls nicht mit der quasiperiodischen Struktur des Lichtgitters vertragen würde", sagt Clemens Bechinger.

Da Kristalle und Quasikristalle völlig unterschiedliche Materialklassen darstellen und deutlich voneinander abweichende physikalische und chemische Eigenschaften besitzen, ist die beobachtete Mischstruktur zunächst erstaunlich. "Die Kombination kristalliner und quasikristalliner Elemente lässt erwarten, dass die von uns beobachtete Mischstruktur interessante neue Materialeigenschaften zeigt", sagt Clemens Bechinger.

Weitere Informationen bei Prof. Clemens Bechinger, 2. Physikalisches Institut,
Tel. 0711/685-65218, e-mail: c.bechinger@physik.uni-stuttgart.de
*) Originalveröffentlichung: Jules Mikhael, Johannes Roth, Laurent Helden, Clemens Bechinger: Archimedean-like tilings on decagonal quasicrystalline surfaces, in:

Nature, 24. Juli 2008, doi: 10.1038/nature07074).

Ursula Zitzler | idw
Weitere Informationen:
http://www.uni-stuttgart.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Ventile für winzige Teilchen
23.05.2018 | Eidgenössische Technische Hochschule Zürich (ETH Zürich)

nachricht Advanced Materials: Glas wie Kunststoff bearbeiten
18.05.2018 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Mit Hilfe molekularer Schalter lassen sich künftig neuartige Bauelemente entwickeln

Einem Forscherteam unter Führung von Physikern der Technischen Universität München (TUM) ist es gelungen, spezielle Moleküle mit einer angelegten Spannung zwischen zwei strukturell unterschiedlichen Zuständen hin und her zu schalten. Derartige Nano-Schalter könnten Basis für neuartige Bauelemente sein, die auf Silizium basierende Komponenten durch organische Moleküle ersetzen.

Die Entwicklung neuer elektronischer Technologien fordert eine ständige Verkleinerung funktioneller Komponenten. Physikern der TU München ist es im Rahmen...

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: GRACE Follow-On erfolgreich gestartet: Das Satelliten-Tandem dokumentiert den globalen Wandel

Die Satellitenmission GRACE-FO ist gestartet. Am 22. Mai um 21.47 Uhr (MESZ) hoben die beiden Satelliten des GFZ und der NASA an Bord einer Falcon-9-Rakete von der Vandenberg Air Force Base (Kalifornien) ab und wurden in eine polare Umlaufbahn gebracht. Dort nehmen sie in den kommenden Monaten ihre endgültige Position ein. Die NASA meldete 30 Minuten später, dass der Kontakt zu den Satelliten in ihrem Zielorbit erfolgreich hergestellt wurde. GRACE Follow-On wird das Erdschwerefeld und dessen räumliche und zeitliche Variationen sehr genau vermessen. Sie ermöglicht damit präzise Aussagen zum globalen Wandel, insbesondere zu Änderungen im Wasserhaushalt, etwa dem Verlust von Eismassen.

Potsdam, 22. Mai 2018: Die deutsch-amerikanische Satellitenmission GRACE-FO (Gravity Recovery And Climate Experiment Follow On) ist erfolgreich gestartet. Am...

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Größter Astronomie-Kongress kommt nach Wien

24.05.2018 | Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Was einen guten Katalysator ausmacht

24.05.2018 | Biowissenschaften Chemie

Superkondensatoren aus Holzbestandteilen

24.05.2018 | Biowissenschaften Chemie

Neue Schaltschrank-Plattform für die Energiewelt

24.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics