Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2,8 Mio. € Fördersumme für Bayreuther Turbinenschaufel-Projekt

30.05.2008
Mit 2,8 Mio. € wird das Forschungsprojekt "Prozesssimulation und Technologieentwicklung von Turbinenschaufeln "gefördert, wie jetzt bekannt wurde.

Die Bayerischen Forschungsstiftung (BFS) übernimmt dabei öffentliche Fördermittel in Höhe von 1 Mio. € und die Oberfrankenstiftung (OFS) 400.000 €.

Die verbleibenden 50% der Projektmittel werden von der Firma MTS Deutschland GmbH zur Verfügung gestellt. MTS errichtet zurzeit eine Fabrik am Technologiehügel in Bayreuth-Wolfsbach, welche noch im Jahr 2008 Turbinenschaufeln für stationäre Gasturbinen fertigen wird. Projektleiter ist Prof. Dr.-Ing. Uwe Glatzel vom Lehrstuhl Metallische Werkstoffe.

Die Projektpartner sind Prof. Dr.-Ing. Walter Krenkel (Lehrstuhl Keramische Werkstoffe), Dr.-Ing. Vasily Ploshikhin (Neue Materialien Bayreuth), Prof. Dr.-Ing. Robert F. Singer (Neue Materialien Fürth) sowie Dr.-Ing. Klaus Schneider von der Firma MTS.

... mehr zu:
»MTS »Turbinenschaufel

Prof. Glatzel und sein Mitarbeiter Dr.-Ing. Rainer Völkl forschen seit über 20 Jahren auf dem Gebiet der Nickel-Basis Superlegierungen. Den Werkstoffen die gleichzeitig höchsten Temperaturen (bis 1150°C) und höchsten Belastungen durch die Zentrifugalkräfte (bis 100 MPa, dies entspricht 1 Tonne/cm2) standhalten.

Bis zu 50 cm große Turbinenschaufeln aus Nickel-Basis Superlegierungen werden ab Ende 2008 von der Firma MTS gefertigt. Einsatz finden diese Schaufeln in stationären Gasturbinen zur Energieerzeugung. Dabei liefert eine einzige Schaufel bis zu 1 MW Strom. Dies entspricht der Leistung von 10 hochwertigen PKW. Bei dem Preis einer Schaufel im Bereich von 10.000 €. Die Schaufeln sollen echte Betriebszeiten von 10 - 20 Jahren erzielen, wobei Formänderungen der Schaufel nur im Bereich von wenigen Prozentpunkten, das heißt nur wenige mm, toleriert werden.

Hergestellt werden diese Schaufeln in der MTS-Fabrik durch das so genannte Feingussverfahren, wobei zunächst ein Wachsmodell der Schaufel erstellt wird, um dieses herum wird eine keramische Form aufgebaut, in welche letztendlich das flüssige Metall gegossen wird. Nach dem Erstarren erhält man die komplexe Form der weitgehend hohlen Turbinenschaufel. Nachbearbeitungen sind dann nur noch in einem sehr geringen Umfang nötig.

Ziel des Projektes ist die Simulation sämtlicher Schritte des Gussprozesses. Dadurch soll der Zeit- und Kostenaufwand zur Fertigung neuer Schaufelgeometrien stark verringert werden. Berechnungen werden auf allen Skalenebene, vom Gießofen (ca. 1 m) bis zur Mikrostruktur (~ 100 nm = 10-7 m) durchgeführt. Um eine hohe Aussagefähigkeit und gute Zuverlässigkeit der Simulation zu ermöglichen sind fundierte Daten für das Metall und die keramische Formschale nötig.

Der Geschäftsführer der Firma MTS, Dr.-Ing. Klaus Schneider, und Prof. Glatzel sind verbunden durch einen Arbeitskreis der Deutschen Gesellschaft für Materialkunde e.V., welcher sich mit dem Hochtemperaturverhalten von Werkstoffen beschäftigt. Dr.-Ing. Schneider leitete diesen Arbeitskreis von 1980-1990, Professor Glatzel von 2003 bis heute.

Kontakt:
Professor Dr.-Ing Uwe Glatzel
Lehrstuhl Metallische Werkstoffe
Tel. 0921/55 - 55 50
E-Mail: uwe.glatzel@uni-bayreuth.de

Jürgen Abel | idw
Weitere Informationen:
http://www.metalle.uni-bayreuth.de/

Weitere Berichte zu: MTS Turbinenschaufel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Metamaterial: Kettenhemd inspiriert Physiker
19.01.2017 | Karlsruher Institut für Technologie

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie