Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

2,8 Mio. € Fördersumme für Bayreuther Turbinenschaufel-Projekt

30.05.2008
Mit 2,8 Mio. € wird das Forschungsprojekt "Prozesssimulation und Technologieentwicklung von Turbinenschaufeln "gefördert, wie jetzt bekannt wurde.

Die Bayerischen Forschungsstiftung (BFS) übernimmt dabei öffentliche Fördermittel in Höhe von 1 Mio. € und die Oberfrankenstiftung (OFS) 400.000 €.

Die verbleibenden 50% der Projektmittel werden von der Firma MTS Deutschland GmbH zur Verfügung gestellt. MTS errichtet zurzeit eine Fabrik am Technologiehügel in Bayreuth-Wolfsbach, welche noch im Jahr 2008 Turbinenschaufeln für stationäre Gasturbinen fertigen wird. Projektleiter ist Prof. Dr.-Ing. Uwe Glatzel vom Lehrstuhl Metallische Werkstoffe.

Die Projektpartner sind Prof. Dr.-Ing. Walter Krenkel (Lehrstuhl Keramische Werkstoffe), Dr.-Ing. Vasily Ploshikhin (Neue Materialien Bayreuth), Prof. Dr.-Ing. Robert F. Singer (Neue Materialien Fürth) sowie Dr.-Ing. Klaus Schneider von der Firma MTS.

... mehr zu:
»MTS »Turbinenschaufel

Prof. Glatzel und sein Mitarbeiter Dr.-Ing. Rainer Völkl forschen seit über 20 Jahren auf dem Gebiet der Nickel-Basis Superlegierungen. Den Werkstoffen die gleichzeitig höchsten Temperaturen (bis 1150°C) und höchsten Belastungen durch die Zentrifugalkräfte (bis 100 MPa, dies entspricht 1 Tonne/cm2) standhalten.

Bis zu 50 cm große Turbinenschaufeln aus Nickel-Basis Superlegierungen werden ab Ende 2008 von der Firma MTS gefertigt. Einsatz finden diese Schaufeln in stationären Gasturbinen zur Energieerzeugung. Dabei liefert eine einzige Schaufel bis zu 1 MW Strom. Dies entspricht der Leistung von 10 hochwertigen PKW. Bei dem Preis einer Schaufel im Bereich von 10.000 €. Die Schaufeln sollen echte Betriebszeiten von 10 - 20 Jahren erzielen, wobei Formänderungen der Schaufel nur im Bereich von wenigen Prozentpunkten, das heißt nur wenige mm, toleriert werden.

Hergestellt werden diese Schaufeln in der MTS-Fabrik durch das so genannte Feingussverfahren, wobei zunächst ein Wachsmodell der Schaufel erstellt wird, um dieses herum wird eine keramische Form aufgebaut, in welche letztendlich das flüssige Metall gegossen wird. Nach dem Erstarren erhält man die komplexe Form der weitgehend hohlen Turbinenschaufel. Nachbearbeitungen sind dann nur noch in einem sehr geringen Umfang nötig.

Ziel des Projektes ist die Simulation sämtlicher Schritte des Gussprozesses. Dadurch soll der Zeit- und Kostenaufwand zur Fertigung neuer Schaufelgeometrien stark verringert werden. Berechnungen werden auf allen Skalenebene, vom Gießofen (ca. 1 m) bis zur Mikrostruktur (~ 100 nm = 10-7 m) durchgeführt. Um eine hohe Aussagefähigkeit und gute Zuverlässigkeit der Simulation zu ermöglichen sind fundierte Daten für das Metall und die keramische Formschale nötig.

Der Geschäftsführer der Firma MTS, Dr.-Ing. Klaus Schneider, und Prof. Glatzel sind verbunden durch einen Arbeitskreis der Deutschen Gesellschaft für Materialkunde e.V., welcher sich mit dem Hochtemperaturverhalten von Werkstoffen beschäftigt. Dr.-Ing. Schneider leitete diesen Arbeitskreis von 1980-1990, Professor Glatzel von 2003 bis heute.

Kontakt:
Professor Dr.-Ing Uwe Glatzel
Lehrstuhl Metallische Werkstoffe
Tel. 0921/55 - 55 50
E-Mail: uwe.glatzel@uni-bayreuth.de

Jürgen Abel | idw
Weitere Informationen:
http://www.metalle.uni-bayreuth.de/

Weitere Berichte zu: MTS Turbinenschaufel

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie