Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Seegurken liefern Ideen für High-Tech-Material

11.03.2008
Bionik: Natur als unendliche Fundgrube für spezielle Anwendungen

Seegurken haben die erstaunliche Fähigkeit, innerhalb kürzester Zeit ihre weiche Haut in eine harte steife Oberfläche zu verwandeln, wenn sie bedroht werden. Forscher haben nun das Geheimnis der Seegurkenhaut gelüftet und ein Material erzeugt, das genau auf diesem Wirkprinzip basiert, berichtet das Wissenschaftsmagazin Science. Die Anwendungen für dieses Material sind mannigfaltig und reichen von Elektroden für ein künstliches Nervensystem bis hin zu neuartigen Prothesen.

Der Materialwissenschaftler Christoph Weder von der Case Western Reserve University in Cleveland hat gemeinsam mit seinem Team ein Nanokomposit - das sind Verbundwerkstoffe mit Teilchen im Nanobereich - nach Vorbild der Seegurkenhaut entwickelt. Die Wissenschaftler haben dazu Forschungsergebnisse aus vorangegangenen Untersuchungen von Meeresbiologen genommen, die den Trick der Seegurken bereits gelüftet hatten. In der Haut der Tiere sind starre Nanofasern aus Kollagen in weiches Gewebe eingebettet. Spezielle chemische Substanzen, die das Nervensystem absondert, lässt die Haut der Tiere plötzlich steif werden. Diese Stoffe kontrollieren demnach die Wechselwirkung zwischen den Nanofasern.

Für das künstlich nachgebaute Nanokomposit haben die Forscher einen Kunststoff verwendet, in den Nanofasern aus Zellulose eingebettet sind. Die Fasern kleben an Knotenpunkten zusammen und bilden so ein festes Netzwerk. Das Wasser spielt allerdings im gesamten Kreislauf der Steifigkeit eine wichtige Rolle, denn es agiert sozusagen als chemischer Schalter. Kommt das Nanokomposit mit Wasser in Berührung, saugt es davon ein wenig auf. "Die Wassermoleküle lösen die Klebstellen zwischen den Nanofasern auf", so Weder. Das Material werde dadurch etwa tausendmal weicher.

... mehr zu:
»Nanofaser »Nanokomposit

Substanzen, die auf diese Weise mit Wasser chemisch schaltbar sind, lassen sich vor allem in der Medizin anwenden. Als erste Anwendung wollen die Forscher daraus Mikroelektroden herstellen, die ein Teil eines künstlichen Nervensystems sein könnten und beispielsweise bei Parkinson-Patienten eingesetzt werden. Bisher scheiterten solche Versuche mit implantierten Mikroelektroden daran, dass das steife Material offensichtlich das weiche Hirngewebe schädigt. Elektroden aus dem Nanokomposit wären zwar beim Implantieren hart, würden dann allerdings weicher werden. Die ersten Untersuchungen zur Biokompatibilität waren jedenfalls viel versprechend, berichten die Forscher. Weder überlegt sich auch den Schaltvorgang von hart zu weich auf elektrisch schaltbare Materialien auszudehnen.

"Das ist eine hervorragende bionische Anwendung", meint der Bionik-Experte Stanislav Gorb von der Evolutionary Biomaterials Group am Max-Planck-Institut für Metallforschung im pressetext-Gespräch. Er selbst kenne diese Gewebe der Stachelhäuter - zu denen auch die Seegurken und Seesterne gehören - und ihre besonderen Eigenschaften. Bionik kombiniert die Begriffe "Biologie" und "Technik miteinander". Als Wissenschaft beschäftigt sie sich mit der Anwendung von "Naturerfindungen" und ihrer innovativen Umsetzung in der Technik.

Wolfgang Weitlaner | pressetext.austria
Weitere Informationen:
http://www.case.edu
http://www.mf.mpg.de

Weitere Berichte zu: Nanofaser Nanokomposit

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics