ETH-Forscher entwickeln neues Verbundmaterial

Für den technologischen Fortschritt braucht es neue und bessere Werkstoffe. Die Materialien sollten leicht, fest und zugleich zäh sein. Perlmutt im Innern von Muschelschalen ist ein Beispiel dafür, wie die Natur diese Aufgabe löst.

Seine guten Eigenschaften verdankt das Perlmutt dem Aufbau in Schichten. Es setzt sich zu 95% aus steifen keramischen Plättchen zusammen, die in einem weichen Biopolymer eingebettet sind. Materialforscher der ETH um Prof. Ludwig Gauckler, Professor für Nichmetallische Werkstoffe, haben nun einen neuen Verbundstoff entwickelt, der dem natürlichen Perlmutt nachempfunden ist.

Der Aufbau dieses künstlichen Hybrid-Materials ist mit einer Backsteinmauer vergleichbar. Winzige, hochfeste Aluminiumoxidplättchen dienen dabei als Backsteine, das Polymer Chitosan hat die Funktion des Mörtels. Das Prinzip, ein Polymer mit anorganischen Plättchen zu mischen, um daraus ein Material mit neuen mechanischen Eigenschaften herzustellen, ist an sich nicht neu. Wichtig sei in diesem Fall jedoch gewesen, die Plättchen konsequent einzeln und klar voneinander getrennt auf das Polymer aufzutragen, betont Gauckler.

Lebenden Organismen wie Muscheln steht nur ein begrenztes Arsenal an Bausteinen zur Verfügung. Besonders die Aragonitplättchen in Perlmutt sind weniger fest als künstliche keramische Plättchen. Die Verwendung solcher hochfester Plättchen macht den Verbundwerkstoff, den die Forschenden der ETH Zürich entwickelt haben, doppelt so stark wie natürliches Perlmutt. Er lässt sich zum Beispiel um 25 Prozent deformieren, ehe er bricht. Perlmutt dagegen geht bei einer Deformation von zwei Prozent bereits in die Brüche.

„Bei der Steifigkeit ist das Naturprodukt dem Kunstprodukt jedoch überlegen“, sagt Lorenz Bonderer, Doktorand und Erstautor der Studie. Die Steifigkeit des neuen Materials ist bis zu sieben Mal tiefer als die von Perlmutt, das heisst Perlmutt hat einen grösseren Widerstand gegen Verformung. Ursache für dieses Phänomen ist, dass in der Natur zwar die einzelnen Plättchen schwächer, dafür komplexer angeordnet und zahlreicher sind.

Das neue Verbundmaterial hat noch ein grosses Verbesserungspotential. So sollen beispielsweise andere Polymere oder Plättchen mit einer anderen Geometrie einsetzt werden. Die Fabrikation wird dadurch möglicherweise erleichtert. Auch die Grenzflächen zwischen Plättchen und Polymer können noch optimiert werden – eine Idee, die man zusammen mit einer Forschungsgruppe vom Max-Planck-Institut für Mikrostrukturphysik in Halle weiterentwickelt.

Die Kombination von exzellentem Struktur-Design aus der Natur und künstlichen Bausteinen könnte in Zukunft auch zu anderen Verbundwerkstoffen mit einzigartigen mechanischen Eigenschaften führen. Die konkreten Anwendungen des „künstlichen Perlmutts“ stehen im Moment nicht im Vordergrund. Dazu sei es noch zu früh, meint Gauckler. Einen solchen Verbundwerkstoff könnte man überall dort, wo feste und flexible Folien benötigt werden, einsetzen.

Originalbeitrag: Bonderer, Lorenz J., André R. Studart & Ludwig J. Gauckler (2008): Bio-inspired Design and Assembly of Platelet Reinforced Polymer Films, Science Vol. 319, 1069 (2008) DOI: 10.1126/science.1148726

Weitere Informationen:
Lorenz Josef Bonderer
ETH Zürich
Professur für Nichtmetallische Werkstoffe
Telefon +41 (0)44 632 68 53
lorenz.bonderer@mat.ethz.ch

Media Contact

Franziska Schmid idw

Weitere Informationen:

http://www.ethz.ch

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Bakterien für klimaneutrale Chemikalien der Zukunft

For­schen­de an der ETH Zü­rich ha­ben Bak­te­ri­en im La­bor so her­an­ge­züch­tet, dass sie Me­tha­nol ef­fi­zi­ent ver­wer­ten kön­nen. Jetzt lässt sich der Stoff­wech­sel die­ser Bak­te­ri­en an­zap­fen, um wert­vol­le Pro­duk­te her­zu­stel­len, die…

Batterien: Heute die Materialien von morgen modellieren

Welche Faktoren bestimmen, wie schnell sich eine Batterie laden lässt? Dieser und weiteren Fragen gehen Forschende am Karlsruher Institut für Technologie (KIT) mit computergestützten Simulationen nach. Mikrostrukturmodelle tragen dazu bei,…

Porosität von Sedimentgestein mit Neutronen untersucht

Forschung am FRM II zu geologischen Lagerstätten. Dauerhafte unterirdische Lagerung von CO2 Poren so klein wie Bakterien Porenmessung mit Neutronen auf den Nanometer genau Ob Sedimentgesteine fossile Kohlenwasserstoffe speichern können…

Partner & Förderer