Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Belastbarkeit von Kunststoffbauteilen einfach, schnell prüfbar: Software analysiert Faserverteilung

06.03.2014

Ähnlich wie bei guten Immobilien heißt es auch bei Glas- und Kohlefasern: „Auf die Lage kommt es an“, ganz besonders, wenn sie Kunststoffbauteile verstärken. Dank ihrer hervorragenden Eignung für den Leichtbau übernehmen diese Werkstoffe immer häufiger die Rolle von Metallbauteilen. Sie haben nicht nur ein geringeres Gewicht, auch ihre Herstellung im Spritzgussverfahren ist sehr effizient und lässt gestalterisch viele Freiheiten. Allerdings hängen die mechanischen Eigenschaften dieser Materialkombination von Lage, Länge und Ausrichtung der Fasern ab. Das Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit hat eine Software zur raschen Beurteilung dieser Fasern entwickelt.

Soll das Material mechanisch hoch beansprucht werden, ist es wichtig, diese Eigenschaften zu kennen, um die Belastungsgrenzen verlässlich vorhersagen zu können. Die Qualität von Simulationsrechnungen des Herstellungsprozesses reicht bei komplexen Bauteilen nicht in allen Bereichen aus, so dass Messungen zur Absicherung notwendig sind.


Visualisierung eines STL-Datensatzes erkannter Fasern.

Grafik: Fraunhofer LBF

Die eigen entwickelte Software des Fraunhofer LBF generiert aus Röntgen-Computertomografien die für eine mechanische Charakterisierung notwendigen Informationen über die Faserverteilung, dazu gehören Lage, Ausrichtung und Länge der Fasern. Neben der Robustheit des Algorithmus kam es den Wissenschaftlern bei der Entwicklung der grafischen Benutzeroberfläche vor allem auf einfache Bedienbarkeit an.

In den meisten Fällen benötigt der Anwender nur drei Angaben direkt aus dem Materialdatenblatt des Herstellers. Alle weiteren Schritte bis hin zum fertigen Bericht erfolgen automatisch. Der Bericht enthält ortsaufgelöste quantitative Informationen über Faserhäufungen, Faserlängenverteilungen und Faserorientierungsverteilungen als Komponenten zwei- und vierstufiger Orientierungstensoren in Form von Diagrammen, Tabellen und als importierbare Dateien.

Zusätzlich liegen die Faserdaten als CAD-Datei vor. Zurzeit verwendet das Fraunhofer LBF die Software für Dienstleistungen und testet darüber hinaus deren Bedienbarkeit. Künftig soll es auch möglich sein, Lizenzen der Software zu erwerben.

Je nach Qualität der Aufnahme lassen sich Proben bis zu einem Fasergewichtsanteil von 50 Prozent analysieren. Werden handelsübliche Tischgeräte wie Mikrocomputer-Tomographen mit Auflösungen im Bereich bis zu drei Mikrometer zur Aufnahme der Tomographiebilder verwendet, so sind Analysen von Proben bis zu einem Fasergewichtsanteil von 30 Prozent möglich.

Über den Forschungsbereich Kunststoffe im Fraunhofer LBF:

Mit dem Forschungsbereich Kunststoffe, hervorgegangen aus dem Deutschen Kunststoffinstitut DKI, begleitet und unterstützt das Fraunhofer LBF seine Kunden entlang der gesamten Wertschöpfungskette von der Polymersynthese über den Werkstoff, seine Verarbeitung und das Produktdesign bis hin zur Qualifizierung und Nachweisführung von komplexen sicherheitsrelevanten Leichtbausystemen. Der Forschungsbereich ist spezialisiert auf das Management kompletter Entwicklungsprozesse und berät seine Kunden in allen Entwicklungsstufen. Hochleistungsthermoplaste und Verbunde, Duromere, Duromer-Composites und Duromer-Verbunde sowie Thermoplastische Elastomere spielen eine zentrale Rolle. Der Bereich Kunststoffe ist ein ausgewiesenes Kompetenzzentrum für Additivierungs-, Formulierungs- und Hybrid-Fragestellungen. Umfassendes Know-how besteht in der Analyse und Charakterisierung von Kunststoffen und deren Veränderung während der Verarbeitung sowie in der Methodenentwicklung zeitaufgelöster Vorgänge bei Kunststoffen.

Weitere Informationen:

http://www.lbf.fraunhofer.de/de/kunststoffe.html

Anke Zeidler-Finsel | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Innovation im Leichtbaubereich: Belastbares Sandwich aus Aramid und Carbon
21.02.2018 | Arbeitsgemeinschaft industrieller Forschungsvereinigungen „Otto von Guericke“ e.V.

nachricht Wie verbessert man die Nahtqualität lasergeschweißter Textilien?
20.02.2018 | Hohenstein Institute

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics