Bausteine für Innovationen in der Biomedizin: rekombinante Spinnenseidenproteine

Mögliche Anwendungen dieser biotechnologisch produzierten Proteine – sie werden als „rekombinante Proteine“ bezeichnet – sind ein Forschungsschwerpunkt von Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl für Biomaterialien innehat. Die Titelgeschichte der jüngsten Ausgabe von „Macromolecular Bioscience“ berichtet über neuere Ergebnisse seiner Forschergruppe.

Seidenpartikel für den Transport medizinischer Wirkstoffe

Partikel aus Spinnenseidenproteinen sind in hervorragender Weise dafür geeignet, Wirkstoffe auf schonende und effektive Weise langanhaltend in einem Organismus freizusetzen. Entscheidend ist dabei der Wirkstoffbeladungs- und Freisetzungsprozess der Partikel, den das Forschungsteam um Scheibel im Labormaßstab analysieren konnte: Zunächst lagern sich die Wirkstoffmoleküle an der Oberfläche eines Seidenpartikels an. Anschließend diffundieren sie in das Innere des Partikels. Sobald die Proteinpartikel mit Körperflüssigkeiten in Kontakt kommen, werden die Wirkstoffmoleküle von der Oberfläche aus langsam und kontinuierlich wieder an die Umgebung abgegeben.

Es bietet sich an, diesen Prozess für die Wirkstoffformulierung zu nutzen. Denn biologisch abbaubare Kapseln aus Spinnenseide können gewährleisten, dass dem Blutkreislauf eine definierte Dosis eines Wirkstoffs zugeführt wird – stetig und über einen längeren Zeitraum hinweg. Die Seidenpartikel selbst werden innerhalb weniger Wochen vom Organismus biologisch abgebaut. Dabei entstehen Aminosäuren, die vom Körper wiederum für den Stoffwechsel verwendet werden können.

Seidenfilme für die künstliche Herstellung von Zellgewebe

Extrem dünne Filme/Folien aus Seidenproteinen bilden einen weiteren Forschungsschwerpunkt. Sie eignen sich unter anderem als Basismaterial für biochemische Sensoren, die winzige Mengen einer organischen Substanz aufspüren können. Von herausragendem Interesse für die Biomedizin ist die Möglichkeit, Seidenfilme für die künstliche Herstellung von Zellgewebe, das sog. „Tissue Engineering“, einzusetzen. Denn auf den Seidenoberflächen lassen sich gewebebildende Zellen ansiedeln, die sich kontinuierlich vermehren und zusammenhängende Strukturen bilden. Es kann sich dabei um ganz unterschiedliche Arten von Zellen handeln – beispielsweise um Zellgewebe, das dem natürlichen Knochenmaterial sehr ähnlich ist, oder auch um Stammzellen, die sich in unterschiedliche Richtungen hin ausdifferenzieren können.

Optimierung von Implantaten für die Chirurgie

Zusammen mit dem Universitätsklinikum Würzburg arbeitet die Forschergruppe um Scheibel seit kurzem an Seidenfilmbeschichtungen für Brustimplantate aus Silikon. Dabei hat der Seidenfilm die Funktion, im Körper eine Barriere zwischen dem Silikon und dem umgebenden Gewebe zu bilden. Das Implantat gewinnt dadurch Oberflächeneigenschaften, die weitaus besser verträglich sind als die des Silkons. So bleiben den Patientinnen Schmerzen und erneute Operationen erspart.

Kontrollierte Eigenschaftsprofile

Bei allen Anwendungen sind die Eigenschaften der Seidenproteine von zentraler Bedeutung: Dazu zählen insbesondere molekulare Mikrostrukturen, das Verhalten der Seidenmaterialien unter verschiedenen Drücken und Temperaturen, ihre chemische Reaktionsfreudigkeit, ihre Gas- und Wasserdurchlässigkeit und – was in der Medizin besonders wichtig ist – ihr biologisches Abbauverhalten. Unter Laborbedingungen können diese Eigenschaften präzise gesteuert werden. Das Bayreuther Forschungsteam um Scheibel ist in der Lage, jeden einzelnen Schritt bei der Herstellung von Seidenmaterialien so zu kontrollieren, dass am Ende ein Eigenschaftsprofil herauskommt, das die beabsichtigten Anwendungen unterstützt.

Biomaterialien – eine Alternative zu synthetischen Kunststoffen

„Es ist beeindruckend, wie vielseitig Spinnenseidenproteine in der Biomedizin, der Pharmazie oder der Textilindustrie eingesetzt werden können,“ erklärt Scheibel. „In den letzten Jahren ist es uns gelungen, die Eigenschaften von seidenbasierten Biomaterialien wie z.B. Filme oder Partikel mit immer größerer Präzision zu kontrollieren; und zwar so, dass sie für die jeweils angestrebten Anwendungen funktionsoptimiert sind. Deshalb sind Biomaterialien, die auf der Basis von Spinnenseidenproteinen hergestellt werden, eine leistungsstarke Alternative zu bisherigen synthetischen Kunststoffen. Die Natur weist uns auch in dieser Hinsicht den Weg zu innovativen Produkten.“

Veröffentlichung:

Kristina Spiess, Andreas Lammel, Thomas Scheibel:
Recombinant Spider Silk Proteins for Applications in Biomaterials,
In: Macromolecular Bioscience (2010), Vol. 10, Issue 9, pp. 998–1007,
DOI-Bookmark: 10.1002/mabi.201000071
Kontaktadresse für weitere Informationen:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Media Contact

Christian Wißler idw

Weitere Informationen:

http://www.uni-bayreuth.de

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer