Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bausteine für Innovationen in der Biomedizin: rekombinante Spinnenseidenproteine

20.09.2010
Spinnenseide gilt in den Materialwissenschaften als eines der faszinierendsten Naturprodukte. Eiweißmoleküle, aus denen sich Spinnenseide zusammensetzt, können heute mithilfe gentechisch veränderter Organismen biotechnologisch hergestellt werden.

Mögliche Anwendungen dieser biotechnologisch produzierten Proteine – sie werden als "rekombinante Proteine" bezeichnet – sind ein Forschungsschwerpunkt von Prof. Dr. Thomas Scheibel, der an der Universität Bayreuth den Lehrstuhl für Biomaterialien innehat. Die Titelgeschichte der jüngsten Ausgabe von "Macromolecular Bioscience" berichtet über neuere Ergebnisse seiner Forschergruppe.

Seidenpartikel für den Transport medizinischer Wirkstoffe

Partikel aus Spinnenseidenproteinen sind in hervorragender Weise dafür geeignet, Wirkstoffe auf schonende und effektive Weise langanhaltend in einem Organismus freizusetzen. Entscheidend ist dabei der Wirkstoffbeladungs- und Freisetzungsprozess der Partikel, den das Forschungsteam um Scheibel im Labormaßstab analysieren konnte: Zunächst lagern sich die Wirkstoffmoleküle an der Oberfläche eines Seidenpartikels an. Anschließend diffundieren sie in das Innere des Partikels. Sobald die Proteinpartikel mit Körperflüssigkeiten in Kontakt kommen, werden die Wirkstoffmoleküle von der Oberfläche aus langsam und kontinuierlich wieder an die Umgebung abgegeben.

Es bietet sich an, diesen Prozess für die Wirkstoffformulierung zu nutzen. Denn biologisch abbaubare Kapseln aus Spinnenseide können gewährleisten, dass dem Blutkreislauf eine definierte Dosis eines Wirkstoffs zugeführt wird – stetig und über einen längeren Zeitraum hinweg. Die Seidenpartikel selbst werden innerhalb weniger Wochen vom Organismus biologisch abgebaut. Dabei entstehen Aminosäuren, die vom Körper wiederum für den Stoffwechsel verwendet werden können.

Seidenfilme für die künstliche Herstellung von Zellgewebe

Extrem dünne Filme/Folien aus Seidenproteinen bilden einen weiteren Forschungsschwerpunkt. Sie eignen sich unter anderem als Basismaterial für biochemische Sensoren, die winzige Mengen einer organischen Substanz aufspüren können. Von herausragendem Interesse für die Biomedizin ist die Möglichkeit, Seidenfilme für die künstliche Herstellung von Zellgewebe, das sog. "Tissue Engineering", einzusetzen. Denn auf den Seidenoberflächen lassen sich gewebebildende Zellen ansiedeln, die sich kontinuierlich vermehren und zusammenhängende Strukturen bilden. Es kann sich dabei um ganz unterschiedliche Arten von Zellen handeln – beispielsweise um Zellgewebe, das dem natürlichen Knochenmaterial sehr ähnlich ist, oder auch um Stammzellen, die sich in unterschiedliche Richtungen hin ausdifferenzieren können.

Optimierung von Implantaten für die Chirurgie

Zusammen mit dem Universitätsklinikum Würzburg arbeitet die Forschergruppe um Scheibel seit kurzem an Seidenfilmbeschichtungen für Brustimplantate aus Silikon. Dabei hat der Seidenfilm die Funktion, im Körper eine Barriere zwischen dem Silikon und dem umgebenden Gewebe zu bilden. Das Implantat gewinnt dadurch Oberflächeneigenschaften, die weitaus besser verträglich sind als die des Silkons. So bleiben den Patientinnen Schmerzen und erneute Operationen erspart.

Kontrollierte Eigenschaftsprofile

Bei allen Anwendungen sind die Eigenschaften der Seidenproteine von zentraler Bedeutung: Dazu zählen insbesondere molekulare Mikrostrukturen, das Verhalten der Seidenmaterialien unter verschiedenen Drücken und Temperaturen, ihre chemische Reaktionsfreudigkeit, ihre Gas- und Wasserdurchlässigkeit und – was in der Medizin besonders wichtig ist – ihr biologisches Abbauverhalten. Unter Laborbedingungen können diese Eigenschaften präzise gesteuert werden. Das Bayreuther Forschungsteam um Scheibel ist in der Lage, jeden einzelnen Schritt bei der Herstellung von Seidenmaterialien so zu kontrollieren, dass am Ende ein Eigenschaftsprofil herauskommt, das die beabsichtigten Anwendungen unterstützt.

Biomaterialien – eine Alternative zu synthetischen Kunststoffen

"Es ist beeindruckend, wie vielseitig Spinnenseidenproteine in der Biomedizin, der Pharmazie oder der Textilindustrie eingesetzt werden können," erklärt Scheibel. "In den letzten Jahren ist es uns gelungen, die Eigenschaften von seidenbasierten Biomaterialien wie z.B. Filme oder Partikel mit immer größerer Präzision zu kontrollieren; und zwar so, dass sie für die jeweils angestrebten Anwendungen funktionsoptimiert sind. Deshalb sind Biomaterialien, die auf der Basis von Spinnenseidenproteinen hergestellt werden, eine leistungsstarke Alternative zu bisherigen synthetischen Kunststoffen. Die Natur weist uns auch in dieser Hinsicht den Weg zu innovativen Produkten."

Veröffentlichung:

Kristina Spiess, Andreas Lammel, Thomas Scheibel:
Recombinant Spider Silk Proteins for Applications in Biomaterials,
In: Macromolecular Bioscience (2010), Vol. 10, Issue 9, pp. 998–1007,
DOI-Bookmark: 10.1002/mabi.201000071
Kontaktadresse für weitere Informationen:
Prof. Dr. Thomas Scheibel
Universität Bayreuth
Lehrstuhl für Biomaterialien
Fakultät für Angewandte Naturwissenschaften
D-95440 Bayreuth
Tel.: +49 (0)921 / 55-7360
E-Mail: thomas.scheibel@uni-bayreuth.de

Christian Wißler | idw
Weitere Informationen:
http://www.uni-bayreuth.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bioabbaubare Polymer-Beschichtung für Implantate
06.12.2016 | Karlsruher Institut für Technologie

nachricht Studie InLight: Einblicke in chemische Prozesse mit Licht
22.11.2016 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Wie sich Zellen gegen Salmonellen verteidigen

Bioinformatiker der Goethe-Universität haben das erste mathematische Modell für einen zentralen Verteidigungsmechanismus der Zelle gegen das Bakterium Salmonella entwickelt. Sie können ihren experimentell arbeitenden Kollegen damit wertvolle Anregungen zur Aufklärung der beteiligten Signalwege geben.

Jedes Jahr sind Salmonellen weltweit für Millionen von Infektionen und tausende Todesfälle verantwortlich. Die Körperzellen können sich aber gegen die...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weiterbildung zu statistischen Methoden in der Versuchsplanung und -auswertung

06.12.2016 | Seminare Workshops

Bund fördert Entwicklung sicherer Schnellladetechnik für Hochleistungsbatterien mit 2,5 Millionen

06.12.2016 | Förderungen Preise

Innovationen für eine nachhaltige Forstwirtschaft

06.12.2016 | Agrar- Forstwissenschaften