Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bahnbrechende Entdeckung an der TU Hamburg: Die Natur macht das beste Materialdesign

28.11.2012
Auf der Suche nach neuen Materialien haben Forscher der TU Hamburg eine weitreichende Entdeckung gemacht: Ihnen gelang der Nachweis, dass die Steifigkeit kristalliner Metalllegierungen in dem von der Natur vorgegebenen Zustand am höchsten ist. Anders gesagt: Es gibt auf diesem Sektor nichts, was besser ist als die Natur.

Mit diesem Ergebnis wird die weltweite Suche nach neuen steifen Materialien zumindest auf dem Gebiet der kristallinen Metalllegierungen in Frage gestellt. Die am Institut für Keramische Hochleistungswerkstoffe gewonnenen Erkenntnisse sind in der heute erscheinenden Ausgabe der Fachzeitschrift „nature“ Gegenstand eines vierseitigen Berichts.

Der von Professor Stefan Müller sowie den Ko-Autoren Sascha Maisel und Michaela Höfler eingereichte Beitrag „A canonical stability/elasticity relationship verified for one million face-centred-cubic structures“ wurde auf Anhieb publiziert – und sogar kommentiert. Der Kommentator, der US-amerikanische Physiker Gus L. W. Hart von der Brigham Young University, erwähnt in seinem Beitrag „Substitution with vision“ unter anderem die US-amerikanische Forschungsinitiative „Materials Genome Initiative“ von Präsident Obama, in deren Mittelpunkt die Optimierung der Eigenschaften funktionaler Materialien steht. Die Hamburger haben „einen wesentlichen Beitrag geleistet, um diesem Ziel näherzukommen,“ schreibt Hart. „nature“-Kommentare, in denen Experten Beiträge bewerten, gelten in Wissenschaftskreisen als festes Indiz für die große Bedeutung eines Forschungsergebnisses.

Wissenschaftler suchen weltweit händeringend nach neuen Materialien, von denen sie sich neue Funktionen versprechen. Ob Keramik, Kunststoff oder kristalline Metalllegierungen – stets geht es darum, Eigenschaften zu entdecken, die entweder über das hinausgehen, was die Natur liefert oder wo die Natur das Vorbild ist. Auch die TU Hamburg sucht in ihrem Sonderforschungsbereich „Maßgeschneiderte, multiskalige Materialsysteme“ nach neuen Materialien mit bis dato nicht dagewesenen Funktionen. In diesem Rahmen ist auch die Forschergruppe um Professor Müller angesiedelt, die sich speziell mit Zusammenhängen zwischen energetischen (atomare Ebene) und mechanischen Eigenschaften wie der Steifigkeit von Materie beschäftigt.

Die Idee, in einem Material durch eine veränderte Zusammensetzung der Komponenten neue Eigenschaften zu generieren, ist uralt und reicht bis in die Bronzezeit. Seit den 60er-Jahren ergänzen Computersimulationen die klassischen Versuche. Egal, welches Verfahren zum Tragen kam, stets beschränkten sich die Untersuchungen auf einzelne Materialien. Die Hamburger Forscher hingegen haben von vorneherein ihre Studie einer ganzen Materialklasse gewidmet: den kristallinen Metalllegierungen.

In ihrem Fokus waren vier verschiedene Metalllegierungen: Nickel-Aluminium, Kupfer-Aluminium, Nickel-Wolfram und Nickel-Tantal. Über eine Million verschiedener atomarer Anordnungen hatten die Wissenschaftler dabei berechnet. Das Ergebnis war eindeutig und lässt sich auf die wichtigsten kristallinen Metalllegierungen übertragen. Je nach Anordnung der Atome ändert sich die Steifigkeit eines Materials. „Es hat sich gezeigt, je stabiler eine solche atomare Anordnung, desto steifer ist diese,“ sagt Müller. Außerdem wurde festgestellt, dass die Stabilität in einem direktem Verhältnis zur Steifigkeit steht, anders gesagt, wenn das Material halb so stabil ist, ist es auch halb so steif. „Die Anordnung mit der niedrigsten Energie hat die höchste Steifigkeit,“ sagt Maisel. Die Natur versuche stets, den Zustand der minimalsten Energie zu erreichen.

Neun Monate nahmen die numerischen Berechnungen und die systematische Auswertung der riesigen Datenbasis in Anspruch. „Dann lag das Ergebnis klar auf dem Tisch,“ sagt Maisel, der federführend die Berechnungen durchführte. Der studierte Physiker, Erstautor des „nature“-Beitrages, promoviert zum Thema am Institut für Keramische Hochleistungswerkstoffe bei Professor Stefan Müller und wurde in seiner Arbeit von Michaela Höfler unterstützt. Noch mitten im Bachelorstudium hat sich die angehende Schiffbauingenieurin für die Material-Modellierung mittels quantenmechanischer Ansätze interessiert und im Institut engagiert.

Die Ergebnisse werfen eine Vielzahl weiterführender Fragen auf, wie etwa: Wie weit lassen sich die Ergebnisse auch auf andere Materialtypen übertragen? Was passiert bei Systemen, die nicht wie die kristallinen Metalllegierungen aus zwei, sondern aus drei und vier Atomarten bestehen? Nicht zuletzt stellt sich aus technischer Sicht die Frage, ob aufgrund der Ergebnisse die Suche nach synthetischen Materialien mit höherer Steifigkeit für wirklich jedes Material sinnvoll ist.

Die Materialforscher an der TUHH hatten erst vor Kurzem mit einer Entdeckung schon einmal Aufsehen erregt, als das Team um Professor Karl Schulte die Entdeckung des leichtesten Werkstoffs der Welt bekanntgab. Das mit Wissenschaftlern aus Kiel entwickelte Aerographit ist stabil und dennoch verformbar sowie elektrisch leitfähig.

Für Rückfragen:

TU Hamburg
Institut für Keramische Hochleistungswerkstoffe
Prof. Dr. rer. nat. Stefan Müller/Sascha Maisel
Tel.: 040/ 42878-3137/3644
E-Mail: stefan.mueller@tuhh.de
E-Mail: sascha.maisel@tuhh.de
TU Hamburg
Pressesprecherin
Jutta Katharina Werner
Tel.: 040/ 42878-4321
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de/gk/welcome.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11609.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Eine Frage der Richtung
27.05.2016 | Universität Konstanz

nachricht Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten
25.05.2016 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiroler Technologie zur Abwasserreinigung weltweit erfolgreich

Auf biologischem Weg und mit geringem Energieeinsatz wandelt ein an der Universität Innsbruck entwickeltes Verfahren in Kläranlagen anfallende Stickstoffverbindungen in unschädlichen Luftstickstoff um. Diese innovative Technologie wurde nun gemeinsam mit dem US-Wasserdienstleister DC Water weiterentwickelt und vermarktet. Für die Kläranlage von Washington DC wird die bisher größte DEMON®-Anlage errichtet.

Das DEMON®-Verfahren wurde bereits vor elf Jahren entwickelt und von der Universität Innsbruck zum Patent angemeldet. Inzwischen wird die Technologie in rund...

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Optische Uhren können die Sekunde machen

Eine Neudefinition der Einheit Sekunde auf der Basis von optischen Uhren wird realistisch

Genauer sind sie jetzt schon, aber noch nicht so zuverlässig. Daher haben optische Uhren, die schon einige Jahre lang als die Uhren der Zukunft gelten, die...

Im Focus: Computational High-Throughput-Screening findet neue Hartmagnete die weniger Seltene Erden enthalten

Für Zukunftstechnologien wie Elektromobilität und erneuerbare Energien ist der Einsatz von starken Dauermagneten von großer Bedeutung. Für deren Herstellung werden Seltene Erden benötigt. Dem Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg ist es nun gelungen, mit einem selbst entwickelten Simulationsverfahren auf Basis eines High-Throughput-Screening (HTS) vielversprechende Materialansätze für neue Dauermagnete zu identifizieren. Das Team verbesserte damit die magnetischen Eigenschaften und ersetzte gleichzeitig Seltene Erden durch Elemente, die weniger teuer und zuverlässig verfügbar sind. Die Ergebnisse wurden im Online-Fachmagazin »Scientific Reports« publiziert.

Ausgangspunkt des Projekts der IWM-Forscher Wolfgang Körner, Georg Krugel und Christian Elsässer war eine Neodym-Eisen-Stickstoff-Verbindung, die auf einem...

Im Focus: University of Queensland: In weniger als 2 Stunden ans andere Ende der Welt reisen

Ein internationales Forschungsteam, darunter Wissenschaftler der University of Queensland, hat im Süden Australiens einen erfolgreichen Hyperschallgeschwindigkeitstestflug absolviert und damit futuristische Reisemöglichkeiten greifbarer gemacht.

Flugreisen von London nach Sydney in unter zwei Stunden werden, dank des HiFiRE Programms, immer realistischer. Im Rahmen dieses Projekts werden in den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Wie sieht die Schifffahrt der Zukunft aus? - IAME-Jahreskonferenz in Hamburg

27.05.2016 | Veranstaltungen

Technologische Potenziale der Multiparameteranalytik

27.05.2016 | Veranstaltungen

Umweltbeobachtung in nah und fern

27.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Stressoren erkennen, Belastungen reduzieren, Fachwissen erlangen

27.05.2016 | Seminare Workshops

HDT SOMMERAKADEMIE 2016

27.05.2016 | Seminare Workshops

11 Millionen Euro für die Erforschung von Magnetfeldsensoren für die medizinische Diagnostik

27.05.2016 | Förderungen Preise