Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bahnbrechende Entdeckung an der TU Hamburg: Die Natur macht das beste Materialdesign

28.11.2012
Auf der Suche nach neuen Materialien haben Forscher der TU Hamburg eine weitreichende Entdeckung gemacht: Ihnen gelang der Nachweis, dass die Steifigkeit kristalliner Metalllegierungen in dem von der Natur vorgegebenen Zustand am höchsten ist. Anders gesagt: Es gibt auf diesem Sektor nichts, was besser ist als die Natur.

Mit diesem Ergebnis wird die weltweite Suche nach neuen steifen Materialien zumindest auf dem Gebiet der kristallinen Metalllegierungen in Frage gestellt. Die am Institut für Keramische Hochleistungswerkstoffe gewonnenen Erkenntnisse sind in der heute erscheinenden Ausgabe der Fachzeitschrift „nature“ Gegenstand eines vierseitigen Berichts.

Der von Professor Stefan Müller sowie den Ko-Autoren Sascha Maisel und Michaela Höfler eingereichte Beitrag „A canonical stability/elasticity relationship verified for one million face-centred-cubic structures“ wurde auf Anhieb publiziert – und sogar kommentiert. Der Kommentator, der US-amerikanische Physiker Gus L. W. Hart von der Brigham Young University, erwähnt in seinem Beitrag „Substitution with vision“ unter anderem die US-amerikanische Forschungsinitiative „Materials Genome Initiative“ von Präsident Obama, in deren Mittelpunkt die Optimierung der Eigenschaften funktionaler Materialien steht. Die Hamburger haben „einen wesentlichen Beitrag geleistet, um diesem Ziel näherzukommen,“ schreibt Hart. „nature“-Kommentare, in denen Experten Beiträge bewerten, gelten in Wissenschaftskreisen als festes Indiz für die große Bedeutung eines Forschungsergebnisses.

Wissenschaftler suchen weltweit händeringend nach neuen Materialien, von denen sie sich neue Funktionen versprechen. Ob Keramik, Kunststoff oder kristalline Metalllegierungen – stets geht es darum, Eigenschaften zu entdecken, die entweder über das hinausgehen, was die Natur liefert oder wo die Natur das Vorbild ist. Auch die TU Hamburg sucht in ihrem Sonderforschungsbereich „Maßgeschneiderte, multiskalige Materialsysteme“ nach neuen Materialien mit bis dato nicht dagewesenen Funktionen. In diesem Rahmen ist auch die Forschergruppe um Professor Müller angesiedelt, die sich speziell mit Zusammenhängen zwischen energetischen (atomare Ebene) und mechanischen Eigenschaften wie der Steifigkeit von Materie beschäftigt.

Die Idee, in einem Material durch eine veränderte Zusammensetzung der Komponenten neue Eigenschaften zu generieren, ist uralt und reicht bis in die Bronzezeit. Seit den 60er-Jahren ergänzen Computersimulationen die klassischen Versuche. Egal, welches Verfahren zum Tragen kam, stets beschränkten sich die Untersuchungen auf einzelne Materialien. Die Hamburger Forscher hingegen haben von vorneherein ihre Studie einer ganzen Materialklasse gewidmet: den kristallinen Metalllegierungen.

In ihrem Fokus waren vier verschiedene Metalllegierungen: Nickel-Aluminium, Kupfer-Aluminium, Nickel-Wolfram und Nickel-Tantal. Über eine Million verschiedener atomarer Anordnungen hatten die Wissenschaftler dabei berechnet. Das Ergebnis war eindeutig und lässt sich auf die wichtigsten kristallinen Metalllegierungen übertragen. Je nach Anordnung der Atome ändert sich die Steifigkeit eines Materials. „Es hat sich gezeigt, je stabiler eine solche atomare Anordnung, desto steifer ist diese,“ sagt Müller. Außerdem wurde festgestellt, dass die Stabilität in einem direktem Verhältnis zur Steifigkeit steht, anders gesagt, wenn das Material halb so stabil ist, ist es auch halb so steif. „Die Anordnung mit der niedrigsten Energie hat die höchste Steifigkeit,“ sagt Maisel. Die Natur versuche stets, den Zustand der minimalsten Energie zu erreichen.

Neun Monate nahmen die numerischen Berechnungen und die systematische Auswertung der riesigen Datenbasis in Anspruch. „Dann lag das Ergebnis klar auf dem Tisch,“ sagt Maisel, der federführend die Berechnungen durchführte. Der studierte Physiker, Erstautor des „nature“-Beitrages, promoviert zum Thema am Institut für Keramische Hochleistungswerkstoffe bei Professor Stefan Müller und wurde in seiner Arbeit von Michaela Höfler unterstützt. Noch mitten im Bachelorstudium hat sich die angehende Schiffbauingenieurin für die Material-Modellierung mittels quantenmechanischer Ansätze interessiert und im Institut engagiert.

Die Ergebnisse werfen eine Vielzahl weiterführender Fragen auf, wie etwa: Wie weit lassen sich die Ergebnisse auch auf andere Materialtypen übertragen? Was passiert bei Systemen, die nicht wie die kristallinen Metalllegierungen aus zwei, sondern aus drei und vier Atomarten bestehen? Nicht zuletzt stellt sich aus technischer Sicht die Frage, ob aufgrund der Ergebnisse die Suche nach synthetischen Materialien mit höherer Steifigkeit für wirklich jedes Material sinnvoll ist.

Die Materialforscher an der TUHH hatten erst vor Kurzem mit einer Entdeckung schon einmal Aufsehen erregt, als das Team um Professor Karl Schulte die Entdeckung des leichtesten Werkstoffs der Welt bekanntgab. Das mit Wissenschaftlern aus Kiel entwickelte Aerographit ist stabil und dennoch verformbar sowie elektrisch leitfähig.

Für Rückfragen:

TU Hamburg
Institut für Keramische Hochleistungswerkstoffe
Prof. Dr. rer. nat. Stefan Müller/Sascha Maisel
Tel.: 040/ 42878-3137/3644
E-Mail: stefan.mueller@tuhh.de
E-Mail: sascha.maisel@tuhh.de
TU Hamburg
Pressesprecherin
Jutta Katharina Werner
Tel.: 040/ 42878-4321
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de/gk/welcome.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11609.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften