Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bahnbrechende Entdeckung an der TU Hamburg: Die Natur macht das beste Materialdesign

28.11.2012
Auf der Suche nach neuen Materialien haben Forscher der TU Hamburg eine weitreichende Entdeckung gemacht: Ihnen gelang der Nachweis, dass die Steifigkeit kristalliner Metalllegierungen in dem von der Natur vorgegebenen Zustand am höchsten ist. Anders gesagt: Es gibt auf diesem Sektor nichts, was besser ist als die Natur.

Mit diesem Ergebnis wird die weltweite Suche nach neuen steifen Materialien zumindest auf dem Gebiet der kristallinen Metalllegierungen in Frage gestellt. Die am Institut für Keramische Hochleistungswerkstoffe gewonnenen Erkenntnisse sind in der heute erscheinenden Ausgabe der Fachzeitschrift „nature“ Gegenstand eines vierseitigen Berichts.

Der von Professor Stefan Müller sowie den Ko-Autoren Sascha Maisel und Michaela Höfler eingereichte Beitrag „A canonical stability/elasticity relationship verified for one million face-centred-cubic structures“ wurde auf Anhieb publiziert – und sogar kommentiert. Der Kommentator, der US-amerikanische Physiker Gus L. W. Hart von der Brigham Young University, erwähnt in seinem Beitrag „Substitution with vision“ unter anderem die US-amerikanische Forschungsinitiative „Materials Genome Initiative“ von Präsident Obama, in deren Mittelpunkt die Optimierung der Eigenschaften funktionaler Materialien steht. Die Hamburger haben „einen wesentlichen Beitrag geleistet, um diesem Ziel näherzukommen,“ schreibt Hart. „nature“-Kommentare, in denen Experten Beiträge bewerten, gelten in Wissenschaftskreisen als festes Indiz für die große Bedeutung eines Forschungsergebnisses.

Wissenschaftler suchen weltweit händeringend nach neuen Materialien, von denen sie sich neue Funktionen versprechen. Ob Keramik, Kunststoff oder kristalline Metalllegierungen – stets geht es darum, Eigenschaften zu entdecken, die entweder über das hinausgehen, was die Natur liefert oder wo die Natur das Vorbild ist. Auch die TU Hamburg sucht in ihrem Sonderforschungsbereich „Maßgeschneiderte, multiskalige Materialsysteme“ nach neuen Materialien mit bis dato nicht dagewesenen Funktionen. In diesem Rahmen ist auch die Forschergruppe um Professor Müller angesiedelt, die sich speziell mit Zusammenhängen zwischen energetischen (atomare Ebene) und mechanischen Eigenschaften wie der Steifigkeit von Materie beschäftigt.

Die Idee, in einem Material durch eine veränderte Zusammensetzung der Komponenten neue Eigenschaften zu generieren, ist uralt und reicht bis in die Bronzezeit. Seit den 60er-Jahren ergänzen Computersimulationen die klassischen Versuche. Egal, welches Verfahren zum Tragen kam, stets beschränkten sich die Untersuchungen auf einzelne Materialien. Die Hamburger Forscher hingegen haben von vorneherein ihre Studie einer ganzen Materialklasse gewidmet: den kristallinen Metalllegierungen.

In ihrem Fokus waren vier verschiedene Metalllegierungen: Nickel-Aluminium, Kupfer-Aluminium, Nickel-Wolfram und Nickel-Tantal. Über eine Million verschiedener atomarer Anordnungen hatten die Wissenschaftler dabei berechnet. Das Ergebnis war eindeutig und lässt sich auf die wichtigsten kristallinen Metalllegierungen übertragen. Je nach Anordnung der Atome ändert sich die Steifigkeit eines Materials. „Es hat sich gezeigt, je stabiler eine solche atomare Anordnung, desto steifer ist diese,“ sagt Müller. Außerdem wurde festgestellt, dass die Stabilität in einem direktem Verhältnis zur Steifigkeit steht, anders gesagt, wenn das Material halb so stabil ist, ist es auch halb so steif. „Die Anordnung mit der niedrigsten Energie hat die höchste Steifigkeit,“ sagt Maisel. Die Natur versuche stets, den Zustand der minimalsten Energie zu erreichen.

Neun Monate nahmen die numerischen Berechnungen und die systematische Auswertung der riesigen Datenbasis in Anspruch. „Dann lag das Ergebnis klar auf dem Tisch,“ sagt Maisel, der federführend die Berechnungen durchführte. Der studierte Physiker, Erstautor des „nature“-Beitrages, promoviert zum Thema am Institut für Keramische Hochleistungswerkstoffe bei Professor Stefan Müller und wurde in seiner Arbeit von Michaela Höfler unterstützt. Noch mitten im Bachelorstudium hat sich die angehende Schiffbauingenieurin für die Material-Modellierung mittels quantenmechanischer Ansätze interessiert und im Institut engagiert.

Die Ergebnisse werfen eine Vielzahl weiterführender Fragen auf, wie etwa: Wie weit lassen sich die Ergebnisse auch auf andere Materialtypen übertragen? Was passiert bei Systemen, die nicht wie die kristallinen Metalllegierungen aus zwei, sondern aus drei und vier Atomarten bestehen? Nicht zuletzt stellt sich aus technischer Sicht die Frage, ob aufgrund der Ergebnisse die Suche nach synthetischen Materialien mit höherer Steifigkeit für wirklich jedes Material sinnvoll ist.

Die Materialforscher an der TUHH hatten erst vor Kurzem mit einer Entdeckung schon einmal Aufsehen erregt, als das Team um Professor Karl Schulte die Entdeckung des leichtesten Werkstoffs der Welt bekanntgab. Das mit Wissenschaftlern aus Kiel entwickelte Aerographit ist stabil und dennoch verformbar sowie elektrisch leitfähig.

Für Rückfragen:

TU Hamburg
Institut für Keramische Hochleistungswerkstoffe
Prof. Dr. rer. nat. Stefan Müller/Sascha Maisel
Tel.: 040/ 42878-3137/3644
E-Mail: stefan.mueller@tuhh.de
E-Mail: sascha.maisel@tuhh.de
TU Hamburg
Pressesprecherin
Jutta Katharina Werner
Tel.: 040/ 42878-4321
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de/gk/welcome.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11609.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Abgas von Kohlendioxid befreien: Neues Membranverfahren der Geesthachter Polymerforscher
03.05.2016 | Helmholtz-Zentrum Geesthacht - Zentrum für Material- und Küstenforschung

nachricht TU Dortmund entwickelt hochfeste Werkzeuge für die Umformtechnik
03.05.2016 | Technische Universität Dortmund

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erste Filmaufnahmen von Kernporen

Mithilfe eines extrem schnellen und präzisen Rasterkraftmikroskops haben Forscher der Universität Basel erstmals «lebendige» Kernporenkomplexe bei der Arbeit gefilmt. Kernporen sind molekulare Maschinen, die den Verkehr in und aus dem Zellkern kontrollieren. In ihrem kürzlich in «Nature Nanotechnology» publizierten Artikel erklären die Forscher, wie bewegliche «Tentakeln» in der Pore die Passage von unerwünschten Molekülen verhindern.

Das Rasterkraftmikroskop (AFM) ist kein Mikroskop zum Durchschauen. Es tastet wie ein Blinder mit seinen Fingern die Oberflächen mit einer extrem feinen Spitze...

Im Focus: Nuclear Pores Captured on Film

Using an ultra fast-scanning atomic force microscope, a team of researchers from the University of Basel has filmed “living” nuclear pore complexes at work for the first time. Nuclear pores are molecular machines that control the traffic entering or exiting the cell nucleus. In their article published in Nature Nanotechnology, the researchers explain how the passage of unwanted molecules is prevented by rapidly moving molecular “tentacles” inside the pore.

Using high-speed AFM, Roderick Lim, Argovia Professor at the Biozentrum and the Swiss Nanoscience Institute of the University of Basel, has not only directly...

Im Focus: 2+1 ist nicht immer 3 - In der Mikro-Welt macht Einigkeit nicht immer stark

Wenn jemand ein liegengebliebenes Auto alleine schiebt, gibt es einen bestimmten Effekt. Wenn eine zweite Person hilft, ist das Ergebnis die Summe der Kräfte der beiden. Wenn zwei kleine Teilchen allerdings ein weiteres kleines Teilchen anschieben, ist der daraus resultierende Effekt nicht notwendigerweise die Summe ihrer Kräfte. Eine kürzlich in Nature Communications veröffentlichte Studie hat diesen merkwürdigen Effekt beschrieben, den Wissenschaftler als „Vielteilchen-Effekt“ bezeichnen.

 

Im Focus: 2+1 is Not Always 3 - In the microworld unity is not always strength

If a person pushes a broken-down car alone, there is a certain effect. If another person helps, the result is the sum of their efforts. If two micro-particles are pushing another microparticle, however, the resulting effect may not necessarily be the sum their efforts. A recent study published in Nature Communications, measured this odd effect that scientists call “many body.”

In the microscopic world, where the modern miniaturized machines at the new frontiers of technology operate, as long as we are in the presence of two...

Im Focus: Winzige Mikroroboter, die Wasser reinigen können

Forscher des Max-Planck-Institutes Stuttgart haben winzige „Mikroroboter“ mit Eigenantrieb entwickelt, die Blei aus kontaminiertem Wasser entfernen oder organische Verschmutzungen abbauen können.

In Zusammenarbeit mit Kollegen in Barcelona und Singapur verwendete die Gruppe von Samuel Sánchez Graphenoxid zur Herstellung ihrer Motoren im Mikromaßstab. D

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungen

analytica conference 2016 in München - Foodomics, mehr als nur ein Modebegriff?

03.05.2016 | Veranstaltungen

Diabetes Kongress 2016: Diabetes schädigt das Herzkreislauf-System

02.05.2016 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hepatitis C-Virus missbraucht den Fettstoffwechsel der Leber

03.05.2016 | Biowissenschaften Chemie

UFW-Fachtagung im Vorzeichen von Big Data und Industrie 4.0

03.05.2016 | Veranstaltungsnachrichten

Ein starkes Team: B2RUN und moove bringen Firmen in Bewegung

03.05.2016 | Unternehmensmeldung