Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bahnbrechende Entdeckung an der TU Hamburg: Die Natur macht das beste Materialdesign

28.11.2012
Auf der Suche nach neuen Materialien haben Forscher der TU Hamburg eine weitreichende Entdeckung gemacht: Ihnen gelang der Nachweis, dass die Steifigkeit kristalliner Metalllegierungen in dem von der Natur vorgegebenen Zustand am höchsten ist. Anders gesagt: Es gibt auf diesem Sektor nichts, was besser ist als die Natur.

Mit diesem Ergebnis wird die weltweite Suche nach neuen steifen Materialien zumindest auf dem Gebiet der kristallinen Metalllegierungen in Frage gestellt. Die am Institut für Keramische Hochleistungswerkstoffe gewonnenen Erkenntnisse sind in der heute erscheinenden Ausgabe der Fachzeitschrift „nature“ Gegenstand eines vierseitigen Berichts.

Der von Professor Stefan Müller sowie den Ko-Autoren Sascha Maisel und Michaela Höfler eingereichte Beitrag „A canonical stability/elasticity relationship verified for one million face-centred-cubic structures“ wurde auf Anhieb publiziert – und sogar kommentiert. Der Kommentator, der US-amerikanische Physiker Gus L. W. Hart von der Brigham Young University, erwähnt in seinem Beitrag „Substitution with vision“ unter anderem die US-amerikanische Forschungsinitiative „Materials Genome Initiative“ von Präsident Obama, in deren Mittelpunkt die Optimierung der Eigenschaften funktionaler Materialien steht. Die Hamburger haben „einen wesentlichen Beitrag geleistet, um diesem Ziel näherzukommen,“ schreibt Hart. „nature“-Kommentare, in denen Experten Beiträge bewerten, gelten in Wissenschaftskreisen als festes Indiz für die große Bedeutung eines Forschungsergebnisses.

Wissenschaftler suchen weltweit händeringend nach neuen Materialien, von denen sie sich neue Funktionen versprechen. Ob Keramik, Kunststoff oder kristalline Metalllegierungen – stets geht es darum, Eigenschaften zu entdecken, die entweder über das hinausgehen, was die Natur liefert oder wo die Natur das Vorbild ist. Auch die TU Hamburg sucht in ihrem Sonderforschungsbereich „Maßgeschneiderte, multiskalige Materialsysteme“ nach neuen Materialien mit bis dato nicht dagewesenen Funktionen. In diesem Rahmen ist auch die Forschergruppe um Professor Müller angesiedelt, die sich speziell mit Zusammenhängen zwischen energetischen (atomare Ebene) und mechanischen Eigenschaften wie der Steifigkeit von Materie beschäftigt.

Die Idee, in einem Material durch eine veränderte Zusammensetzung der Komponenten neue Eigenschaften zu generieren, ist uralt und reicht bis in die Bronzezeit. Seit den 60er-Jahren ergänzen Computersimulationen die klassischen Versuche. Egal, welches Verfahren zum Tragen kam, stets beschränkten sich die Untersuchungen auf einzelne Materialien. Die Hamburger Forscher hingegen haben von vorneherein ihre Studie einer ganzen Materialklasse gewidmet: den kristallinen Metalllegierungen.

In ihrem Fokus waren vier verschiedene Metalllegierungen: Nickel-Aluminium, Kupfer-Aluminium, Nickel-Wolfram und Nickel-Tantal. Über eine Million verschiedener atomarer Anordnungen hatten die Wissenschaftler dabei berechnet. Das Ergebnis war eindeutig und lässt sich auf die wichtigsten kristallinen Metalllegierungen übertragen. Je nach Anordnung der Atome ändert sich die Steifigkeit eines Materials. „Es hat sich gezeigt, je stabiler eine solche atomare Anordnung, desto steifer ist diese,“ sagt Müller. Außerdem wurde festgestellt, dass die Stabilität in einem direktem Verhältnis zur Steifigkeit steht, anders gesagt, wenn das Material halb so stabil ist, ist es auch halb so steif. „Die Anordnung mit der niedrigsten Energie hat die höchste Steifigkeit,“ sagt Maisel. Die Natur versuche stets, den Zustand der minimalsten Energie zu erreichen.

Neun Monate nahmen die numerischen Berechnungen und die systematische Auswertung der riesigen Datenbasis in Anspruch. „Dann lag das Ergebnis klar auf dem Tisch,“ sagt Maisel, der federführend die Berechnungen durchführte. Der studierte Physiker, Erstautor des „nature“-Beitrages, promoviert zum Thema am Institut für Keramische Hochleistungswerkstoffe bei Professor Stefan Müller und wurde in seiner Arbeit von Michaela Höfler unterstützt. Noch mitten im Bachelorstudium hat sich die angehende Schiffbauingenieurin für die Material-Modellierung mittels quantenmechanischer Ansätze interessiert und im Institut engagiert.

Die Ergebnisse werfen eine Vielzahl weiterführender Fragen auf, wie etwa: Wie weit lassen sich die Ergebnisse auch auf andere Materialtypen übertragen? Was passiert bei Systemen, die nicht wie die kristallinen Metalllegierungen aus zwei, sondern aus drei und vier Atomarten bestehen? Nicht zuletzt stellt sich aus technischer Sicht die Frage, ob aufgrund der Ergebnisse die Suche nach synthetischen Materialien mit höherer Steifigkeit für wirklich jedes Material sinnvoll ist.

Die Materialforscher an der TUHH hatten erst vor Kurzem mit einer Entdeckung schon einmal Aufsehen erregt, als das Team um Professor Karl Schulte die Entdeckung des leichtesten Werkstoffs der Welt bekanntgab. Das mit Wissenschaftlern aus Kiel entwickelte Aerographit ist stabil und dennoch verformbar sowie elektrisch leitfähig.

Für Rückfragen:

TU Hamburg
Institut für Keramische Hochleistungswerkstoffe
Prof. Dr. rer. nat. Stefan Müller/Sascha Maisel
Tel.: 040/ 42878-3137/3644
E-Mail: stefan.mueller@tuhh.de
E-Mail: sascha.maisel@tuhh.de
TU Hamburg
Pressesprecherin
Jutta Katharina Werner
Tel.: 040/ 42878-4321
E-Mail: j.werner@tuhh.de

Jutta Katharina Werner | idw
Weitere Informationen:
http://www.tuhh.de/gk/welcome.html
http://www.nature.com/nature/journal/vaop/ncurrent/full/nature11609.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Kieler Forschende bauen die kleinsten Maschinen der Welt
22.05.2015 | Christian-Albrechts-Universität zu Kiel

nachricht Den perfekten Reifen berechnen
20.05.2015 | Forschungszentrum Jülich GmbH

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kieler Forschende bauen die kleinsten Maschinen der Welt

Die DFG stellt Millionenförderung für die Entwicklung neuartiger Medikamente und Materialien an der Christian-Albrechts-Universität zu Kiel (CAU) bereit.

Großer Jubel an der Christian-Albrechts-Universität zu Kiel (CAU): Wie die Deutsche Forschungsgemeinschaft (DFG) heute (Donnerstag, 21. Mai) bekannt gab,...

Im Focus: Basler Physiker entwickeln Methode zur effizienten Signalübertragung aus Nanobauteilen

Physiker haben eine innovative Methode entwickelt, die den effizienten Einsatz von Nanobauteilen in elektronische Schaltkreisen ermöglichen könnte. Sie entwickelten dazu eine Anordnung, bei der ein Nanobauteil mit zwei elektrischen Leitern verbunden ist. Diese bewirken eine hocheffiziente Auskopplung des elektrischen Signals. Die Wissenschaftler vom Departement Physik und dem Swiss Nanoscience Institute der Universität Basel haben ihre Ergebnisse zusammen mit Kollegen der ETH Zürich in der Fachzeitschrift «Nature Communications» publiziert.

Elektronische Bauteile werden immer kleiner. In Forschungslabors werden bereits Bauelemente von wenigen Nanometern hergestellt, was ungefähr der Grösse von...

Im Focus: Basel Physicists Develop Efficient Method of Signal Transmission from Nanocomponents

Physicists have developed an innovative method that could enable the efficient use of nanocomponents in electronic circuits. To achieve this, they have developed a layout in which a nanocomponent is connected to two electrical conductors, which uncouple the electrical signal in a highly efficient manner. The scientists at the Department of Physics and the Swiss Nanoscience Institute at the University of Basel have published their results in the scientific journal “Nature Communications” together with their colleagues from ETH Zurich.

Electronic components are becoming smaller and smaller. Components measuring just a few nanometers – the size of around ten atoms – are already being produced...

Im Focus: Phagen übertragen Antibiotikaresistenzen auf Bakterien – Nachweis auf Geflügelfleisch

Bakterien entwickeln immer häufiger Resistenzen gegenüber Antibiotika. Es gibt unterschiedliche Erklärungen dafür, wie diese Resistenzen in die Bakterien gelangen. Forschende der Vetmeduni Vienna fanden sogenannte Phagen auf Geflügelfleisch, die Antibiotikaresistenzen auf Bakterien übertragen können. Phagen sind Viren, die ausschließlich Bakterien infizieren können. Für Menschen sind sie unschädlich. Phagen könnten laut Studie jedoch zur Verbreitung von Antibiotikaresistenzen beitragen. Die Erkenntnisse sind nicht nur für die Lebensmittelproduktion sondern auch für die Medizin von Bedeutung. Die Studie wurde in der Fachzeitschrift Applied and Environmental Microbiology veröffentlicht.

Antibiotikaresistente Bakterien stellen weltweit ein bedeutendes Gesundheitsrisiko dar. Gängige Antibiotika sind bei der Behandlung von Infektionskrankheiten...

Im Focus: Die schreckliche Schönheit der Medusa

Astronomen haben mit dem Very Large Telescope der ESO in Chile das bisher detailgetreueste Bild vom Medusa-Nebel eingefangen, das je aufgenommen wurde. Als der Stern im Herzen dieses Nebels altersschwach wurde, hat er seine äußeren Schichten abgestoßen, aus denen sich diese farbenfrohe Wolke bildete. Das Bild lässt erahnen, welches endgültige Schicksal die Sonne einmal ereilen wird: Irgendwann wird aus ihr ebenfalls ein Objekt dieser Art werden.

Dieser wunderschöne Planetarische Nebel ist nach einer schrecklichen Kreatur aus der griechischen Mythologie benannt – der Gorgone Medusa. Er trägt auch die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

TU Darmstadt: Gipfel der Verschlüsselung - CROSSING-Konferenz am 1. und 2. Juni in Darmstadt

22.05.2015 | Veranstaltungen

Internationale neurowissenschaftliche Tagung

22.05.2015 | Veranstaltungen

Biokohle-Forscher tagen in Potsdam

21.05.2015 | Veranstaltungen

 
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nanogefäß mit einer Perle aus Gold

22.05.2015 | Biowissenschaften Chemie

Ferngesteuerte Mikroschwimmer: Jülicher Physiker simulieren Bewegungen von Bakterien an Oberflächen

22.05.2015 | Physik Astronomie

Was Chromosomen im Innersten zusammenhält

22.05.2015 | Biowissenschaften Chemie