Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Aushärten von Zement - Neue Einblicke mit modernen Methoden der Neutronenstreuung

19.11.2009
Die Zementindustrie gehört zu den Branchen, die wesentlich zum Kohlendioxid-Ausstoß beitragen. Technologieentwicklungen zielen deshalb darauf ab, die Haltbarkeit des Betons entscheidend zu verbessern, um so weniger Beton herstellen zu müssen. Dazu muss vor allem der Wasserfluss im Zement reduziert werden.

Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit internationalen Kollegen neue Einblicke in diese Prozesse gewonnen. In der Fachzeitschrift ACS Applied Materials & Interfaces stellen Heloisa Bordallo (HZB) und ihr Team Neutronenmessungen vor, mit denen sie auf einzigartige Weise den Wassertransport im Zement verfolgen können.

Die Zementindustrie gehört zu den Branchen, die wesentlich zum Kohlendioxid-Ausstoß beitragen. Fünf bis sieben Prozent beträgt ihr Anteil an der weltweiten Emission. Technologieentwicklungen zielen deshalb darauf ab, die Haltbarkeit des Betons entscheidend zu verbessern, um so weniger Beton herstellen zu müssen. Dazu muss vor allem der Wasserfluss im Zement reduziert werden, was nur gelingt, wenn man das Prinzip der Wasser-Mobilität während des Aushärtens versteht.

Forscher des Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) haben in Kooperation mit internationalen Kollegen neue Einblicke in diese Prozesse gewonnen. In der Fachzeitschrift ACS Applied Materials & Interfaces stellen Heloisa Bordallo (HZB) und ihr Team Neutronenmessungen vor, mit denen sie auf einzigartige Weise den Wassertransport im Zement verfolgen können. "Die Neutronenstreuung ist für derartige Untersuchungen besonders gut geeignet, weil man kleinste Strukturen von nur wenigen Nanometern, aber auch größere Strukturen von mehreren Mikrometern untersuchen kann", sagt Heloisa Bordallo. Viele andere Methoden sind über so einen großen Bereich nicht sensibel genug.

Als eines der wichtigsten Ergebnisse haben die Forscher herausgefunden, dass es Kanäle und Poren im Zement gibt, die die Mobilität des Wassers auf unterschiedliche Weise beeinflussen. Zum einen gibt es sehr kleine Poren mit einem Radius von weniger als zehn Nanometer, so genannte Gel-Poren. Diese beeinflussen die horizontale und die kreisförmige Wasserbewegung im Zement und sind wichtig für die Qualität des ausgehärteten Betons. Im Idealfall kontrollieren diese Poren den Wasserfluss. Doch oft sind es nicht die Gel-Poren, die das Wasser tatsächlich festhalten. Dafür sorgen die winzigen Kanäle zwischen ihnen. Sie sind noch kleiner als die Gel-Poren und wirken aufgrund von Kapillarkräften wie ein Flaschenhals, in dem das Wasser steckenbleibt.

"Solche detaillierten Kenntnisse zur Struktur von Zement waren bislang unbekannt", sagt Heloisa Bordallo. In einem aktuellen Review in der Zeitschrift für Physikalische Chemie schreibt sie: "Wir können mithilfe der Neutronenstreuung genau ermitteln, wie schnell sich das Wasser in den Gel-Poren und den Kapillarporen bewegt." Für die Zementindustrie bedeutet dies, dass sie mit diesem Wissen Grenzwerte für den Wasserfluss festsetzen und so den Herstellungsprozess besser kontrollieren könnte.

Artikel in ACS Applied Materials & Interfaces, Vol. 1 No10 pp 2154-2162
"Hindered Water Motions in Hardened Cement Pastes obtained on a Large Time and Length Scale"

Heloisa N. Bordallo, Laurence P. Aldridge, Peter Fouquet, Luis Carlos Pardo, Tobias Unruh, Joachim Wuttke and Fabiano Yokaichiya

Review in Zeitschrift für Physikalische Chemie, in press
"Concrete and Cement studied by QENS"
Heloisa N. Bordallo, Laurence P. Aldridge
Weitere Informationen:
Helmholtz-Zentrum Berlin
Hahn-Meitner-Platz 1
14109 Berlin
Dr. Heloisa N. Bordallo
Tel.: 030-8062-2924
bordallo@helmholtz-berlin.de
Pressestelle:
Dr. Ina Helms
Tel.: 030 / 8062-2034
ina.helms@helmholtz-berlin.de
Das Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) betreibt und entwickelt Großgeräte für die Forschung mit Photonen (Synchrotronstrahlung) und Neutronen mit international konkurrenzfähigen oder sogar einmaligen Experimentiermöglichkeiten. Diese Experimentiermöglichkeiten werden jährlich von mehr als 2500 Gästen aus Universitäten und außeruniversitären Forschungseinrichtungen weltweit genutzt. Das Helmholtz-Zentrum Berlin betreibt Material-forschung zu solchen Themen, die besondere Anforderungen an die Großgeräte stellen. Forschungsthemen sind Materialforschung für die Energietechnologien, Magnetische Materialien und Funktionale Materialien. Im Schwerpunkt Solarenergieforschung steht die Entwicklung von Dünnschichtsolarzellen im Vordergrund, aber auch chemische Treibstoffe aus Sonnenlicht sind ein wichtiger Forschungsgegenstand. Am HZB arbeiten rund 1100 Mitarbeiter/innen, davon etwa 800 auf dem Campus Lise-Meitner in Wannsee und 300 auf dem Campus Wilhelm-Conrad-Röntgen in Adlershof.

Das HZB ist Mitglied in der Helmholtz-Gemeinschaft Deutscher Forschungszentren e.V., der größten Wissenschaftsorga-nisation Deutschlands.

Dr. Ina Helms | idw
Weitere Informationen:
http://www.helmholtz-berlin.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Forscher spinnen künstliche Seide aus Kuhmolke
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide
20.01.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Forscher spinnen künstliche Seide aus Kuhmolke

Ein schwedisch-deutsches Forscherteam hat bei DESY einen zentralen Prozess für die künstliche Produktion von Seide entschlüsselt. Mit Hilfe von intensivem Röntgenlicht konnten die Wissenschaftler beobachten, wie sich kleine Proteinstückchen – sogenannte Fibrillen – zu einem Faden verhaken. Dabei zeigte sich, dass die längsten Proteinfibrillen überraschenderweise als Ausgangsmaterial schlechter geeignet sind als Proteinfibrillen minderer Qualität. Das Team um Dr. Christofer Lendel und Dr. Fredrik Lundell von der Königlich-Technischen Hochschule (KTH) Stockholm stellt seine Ergebnisse in den „Proceedings“ der US-Akademie der Wissenschaften vor.

Seide ist ein begehrtes Material mit vielen erstaunlichen Eigenschaften: Sie ist ultraleicht, belastbarer als manches Metall und kann extrem elastisch sein....

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Neuer Algorithmus in der Künstlichen Intelligenz

24.01.2017 | Veranstaltungen

Gehirn und Immunsystem beim Schlaganfall – Neueste Erkenntnisse zur Interaktion zweier Supersysteme

24.01.2017 | Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Im Interview mit Harald Holzer, Geschäftsführer der vitaliberty GmbH

24.01.2017 | Unternehmensmeldung

MAIUS-1 – erste Experimente mit ultrakalten Atomen im All

24.01.2017 | Physik Astronomie

European XFEL: Forscher können erste Vorschläge für Experimente einreichen

24.01.2017 | Physik Astronomie