Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augsburger Nanobeben auf kalifornischem Molybdänit

28.10.2015

Forscher der Universität Augsburg und der University of California at Riverside detektieren und transportieren mit akustischen Oberflächenwellen elektrische Ladungen in zweidimensionalen Kristallen

Ein bayerisch-kalifornisches Team von Forschern der Universität Augsburg und der University of California in Riverside haben ein neuartiges hybrides Bauelement entwickelt, das es erlaubt, Eigenschaften und Geheimnisse sogenannter zweidimensionaler Kristalle zu entschlüsseln.


Edwin Preciado von der UC Riverside (rechts) und sein Augsburger Kollege Sebastian Hammer im Reinraum

© Ludwig Bartels & Hubert Krenner

Bis hin zu drahtlos abfragbaren Chips reicht das Anwendungspotential der entwickelten und experimentell erprobten Methode, elektrische Ladungen in solchen Materialen mit akustischen Oberflächenwellen zu detektieren und zu transportieren.

Unter zweidimensionalen Kristallen versteht man Materialien mit einer minimalen Zahl von Atomlagen. Wegen ihrer besonderen Eigenschaften werden 2D-Kristalle als Schlüsselmaterialen für elektronische Bauelemente der Nach-Silizium-Ära weltweit untersucht.

In der aktuellen Ausgabe der Fachzeitschrift "Nature Communications" berichten Forscher der Universität Augsburg und der UC Riverside nun, wie sie mit Hilfe akustischer Oberflächenwellen in ultradünnen 2D-Kristallen elektrische Ladungen nicht nur nachweisen, sondern auch gezielt wie auf einem Förderband transportieren können.

Als zweidimensionale Kristalle verwendete das bayerisch-kalifornische Forscherteam speziell für diesen Zweck an der UC Riverside hergestelltes Molybdänit, ein neuartiges Paradematerial aus der Klasse der Übergangsmetalldichalkogenide, das sie dann mit der in Augsburg seit vielen Jahren perfekt beherrschten und in vielen Bereichen der Nanowissenschaften eingesetzten Nanobeben-Methode studiert haben - und zwar mit einem wegweisenden Ergebnis:

"Wir sind nun in der Lage, elektrische Ladungen, die von einem winzigen Laserstrahl in einer nur drei Atomlagen dicken Molybdänitschicht erzeugt werden, aus einer Entfernung von mehreren Millimetern direkt auf einem Chip zu detektieren – und das ohne jede elektrische Zuleitung", berichtet Prof. Dr. Hubert Krenner.

Akustische Oberflächenwellen – Surface Acoustic Waves, kurz: SAWs – werden heute schon in Mobiltelefonen und anderen drahtlosen Kommunikationssystemen, aber auch in der Sensorik und in der Biomedizin im großen Maßstab eingesetzt. "Vor diesem Hintergrund", so Krenner, "sehen wir in unserer neuen SAW-Methode, elektrische Ladung in Molybdänit-2D-Kristallen zu erkennen und zu transportieren, ein extrem hohes Anwendungspotential der neuartigen Hybride bis hin zu drahtlosen, über Funk abfragbaren Chips."

Das Projekt, das diese Perspektiven jetzt eröffnet, wurde über den Atlantik hinweg von Florian Schülein, Absolvent des Augsburger Lehrstuhls für Experimentalphysik I, und Edwin Preciado, Doktorand bei Professor Ludwig Bartels in Riverside, bearbeitet.

„Bei unseren gemeinsamen Forschungen", so Bartels, "haben wir sehr von unseren komplementären Expertisen profitiert. Deren einzigartige Verknüpfung beim Studium von 2D-Kristallen eröffnet uns jetzt völlig neue Perspektiven sowohl für praktische Anwendungen als auch in der Grundlagenforschung.“

Die 2D-Kristalle wurden in Kalifornien hergestellt, in Augsburg wurden sie dann zu hybriden Bauelementen weiterverarbeitet und experimentell untersucht. Dazu Krenner: „Es war faszinierend zu sehen, mit wieviel Motivation und Geschick Preciado und Schülein das kalifornische Molybdänit und die bayerischen SAWs in unseren Laboren in Windeseile verbunden und dabei transatlantische Spitzenforschung mit diesem zukunftsträchtigen Ergebnis vorangetrieben haben."

Krenner ist mit seiner jungen Arbeitsgruppe am Lehrstuhl für Experimentalphysik I der Universität Augsburg angesiedelt. Prof. Dr. Achim Wixforth, der Inhaber dieses auch in den Exzellencluster "Nanosystems Initiative Munich" (NIM) eingebundenen Augsburger Lehrstuhls, gilt international als Pionier auf dem Feld der akustischen Oberflächenwellen.

„Die Zusammenarbeit mit der Augsburger SAW-Spitzenforschung war entscheidend für unseren gemeinsamen Erfolg", betont Preciado und fügt hinzu, dass er während seines mehrmonatigen Aufenthalts in Augsburg sehr viel gelernt habe: "Ich konnte viele Erfahrungen sammeln und neue Kompetenzen entwickeln. Diese Möglichkeiten wären mir in den USA so nicht geboten worden.“

Die Fortsetzung der erfolgreichen Augsburg-Riverside-Zusammenarbeit ist bereits auf bestem Weg: Sebastian Hammer, wie Florian Schülein Student von Krenner und Wixforth, war bereits zum Gegenbesuch in Riverside, um neue Proben für faszinierende Experimente mit spektakulären Ergebnissen herzustellen.

Das Projekt wurde vom Bayerisch-Kalifornischen Technologiezentrum (BaCaTeC) anschubfinanziert. Es wurde darüber hinaus in Deutschland im Rahmen der Exzellenzinitiative durch den Exzellenzcluster "Nanosystems Initiative Munich" (NIM) und die Deutsche Forschungsgemeinschaft (DFG) im Rahmen des Emmy Noether Programms unterstützt. In den USA wurde es von C-SPIN, einem STARnet Center der Semiconductor Research Cooperation und der National Science Foundation (NSF) gefördert.

Publikation:

Edwin Preciado, Florian J.R. Schülein, Ariana E. Nguyen, David Barroso, Miguel Isarraraz, Gretel von Son, I-Hsi Lu, Wladislaw Michailow, Benjamin Möller, Velveth Klee, John Mann, Achim Wixforth,
Ludwig Bartels, Hubert J. Krenner: Scalable fabrication of a hybrid field-effect and acousto-electric device by direct growth of monolayer MoS2/LiNbO3; Nature Communications 6, 8593; doi:10.1038/ncomms9593 (2015), http://dx.doi.org/10.1038/ncomms9593

Ansprechpartner:

Prof. Dr. Hubert Krenner
hubert.krenner@physik.uni-augsburg.de
Telefon +49(0)821-598-3308
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/emmynoether/

Prof. Dr. Achim Wixforth
achim.wixforth@physik.uni-augsburg.de
Telefon +49(0)821-598-3300
http://www.physik.uni-augsburg.de/de/lehrstuehle/exp1/

Lehrstuhl für Experimentalphysik I
Universität Augsburg
Universitätsstraße 1
86159 Augsburg

Weitere Informationen:

http://dx.doi.org/10.1038/ncomms9593

Klaus P. Prem | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Beschichtung lässt Muscheln abrutschen
18.08.2017 | Friedrich-Alexander-Universität Erlangen-Nürnberg

nachricht PKW-Verglasung aus Plastik?
15.08.2017 | Technische Hochschule Mittelhessen

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie