Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Augsburger Diamanten beschleunigen Neutronenforschung

27.07.2009
Augsburger Materialwissenschaftler kooperieren mit dem ILL, der FRM II und dem HZB bei der Entwicklung von Diamant-Monochromatoren, die eine signifikante Senkung der Messungsdauern versprechen.

Wenn's läuft, wie geplant, werden die Forscher der drei großen europäischen Neutronenforschungszentren ILL (Grenoble), FRM II (München) und HZB (Berlin) ihre Messungen in drei oder vier Jahren doppelt, vielleicht sogar viermal so schnell durchführen können wie bislang.

Und dies dank 2 bis 3 Millimeter starker Diamant-Mosaikkristalle, die von der Diamant-Arbeitsgruppe am Augsburger Lehrstuhl für Experimentalphysik IV (Prof. Dr. Bernd Stritzker) unter Leitung von Dr. Matthias Schreck auf Silizumscheiben gezüchtet werden, um die bislang üblichen Kupfer-, Germanium- oder Grafit-Kristalle in den Monochromatoren der Messanlagen zu ersetzen.

Zum Erreichen dieses Ziels steuert das Bundesministerium für Bildung und Forschung (BMBF) für Sach- und Personalmittel 440.000 Euro bei, direkt von den drei kooperierenden Neutronenforschungszentren fließt ein Betrag in ähnlicher Größenordnung in das Vorhaben ein.

Großes Interesse der Neutronen-Community am Augsburger Diamanten-Know-how

"Dass die drei beteiligten Forschungszentren aus eigenen Mitteln wesentlich zur Finanzierung beitragen, dokumentiert das große Interesse der Neutronen-Community an unserer Entwicklung von Diamant-Mosaikkristallen zur Anwendung in Neutronen-Monochromatoren", betont Schreck, der die Vertreter des Grenobler Institut Laue-Langevin (ILL), der Münchner Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II) und des Helmholtz-Zentrums Berlin für Materialien und Energie (HZB) für den 23. Juli 2009 ans Institut für Physik der Universität Augsburg zum konstituierenden Projekttreffen eingeladen hatte.

Erhöhung der Intensität des Neutronenstrahls

Vom Einsatz solch neuer, mit Diamant-Mosaikkristallen ausgerüsteter Monochromatoren, die es erlauben, bestimmte Wellenlängen aus einer polychromatisch, also aus verschiedenen Wellenlängen zusammengesetzten Strahlung wesentlich effektiver herauszuisolieren, versprechen sich die Forscher eine Erhöhung der Intensität des Neutronenstrahls auf der zu messenden Probe um einen Faktor von zwei bis vier. Diese Intensitätssteigerung würde wiederum die oft tagelangen Messzeiten der Neutronenwissenschaftler erheblich verkürzen, so dass die große Nachfrage nach Experimenten mit den Neutronen aus den Forschungsreaktoren deutlich schneller befriedigt werden könnte. Erreicht werden soll diese Optimierung einfach dadurch, dass die Kupfer-, Germanium oder Grafit-Mosaikkristalle in den Monochromatoren durch die Augsburger Diamant-Mosaikkristalle ersetzt werden. An den Neutronenquellen selbst müssten keinerlei Änderungen vorgenommen werden, um den gewünschten Effekt zu erzielen.

Mit einer Perfektion, die Einkristallen nahekommt

"Der Diamantgruppe an meinem Lehrstuhl ist es über die letzten Jahre hinweg durch konsequente Forschungsarbeiten gelungen, weltweit die führende Position bei der Abscheidung großflächiger Diamantschichten aus der Gasphase auf andersartige Kristalle einzunehmen." So erklärt Stritzker den Weg zu den Augsburger Materialwissenschaftlern, den die europäischen Neutronenforscher gefunden haben. Bei diesem Augsburger Verfahren wächst Diamant über eine Reihe trickreicher Zwischenschichten auf vergleichsweise billigen und überall verfügbaren Siliziumscheiben mit einer Perfektion, die Einkristallen nahekommt. Und dass die Augsburger Diamanten der Perfektion von Einkristallen "nur" nahekommen, ist im konkreten Fall sogar ein klarer Pluspunkt: "Überraschenderweise", so Schreck, "entspricht die verbleibende Defektstruktur in unseren Proben - eine Fehlorientierung von wenigen Zehntel Grad - exakt den Wünschen der Neutronenforscher, die für ihre Anwendung perfekte Einkristalle überhaupt nicht gebrauchen könnten."

Die Herausforderung liegt zwischen 100 Mikro- und 3 Millimetern

Bei der Züchtung von Diamantschichten verfügen die Augsburger Materialforscher über langjährige Erfahrung und ausgewiesenes Know-how, aber das jetzt neu in Angriff genommene Projekt ist dennoch alles andere als ein Kinderspiel: "Wir stehen vor der großen Herausforderung, aus den bisher vorliegenden Schichten, die eine Dicke im Bereich von einigen 100 Mikrometern haben, Kristalle von 2 bis 3 mm Dicke mit homogenen und definierten Eigenschaften zu wachsen", erläutert Schreck. "Entscheidend hierfür wird sein, dass es uns gelingt, die Wachstumsbedingungen im Mikrowellenplasma über größere Flächen hinweg und für Tage stabil zu halten."

Erzeugung in Augsburg, Test in Grenoble, München und Berlin - und dann der Prototyp

Für jeden einzelnen der geplanten neuen Monochromatoren werden jeweils Hunderte von Karat an Diamant mit wohldefinierter Mosaikstruktur benötigt. Im Verlauf des Projekts wird am Augsburger Physik-Institut zunächst daran gearbeitet werden, die Diamant-Mosaikkristalle zu erzeugen und sie strukturell zu charakterisieren. Anschließend folgen Tests an den Neutronenquellen in Grenoble, München und Berlin. Diejenigen Kristalle, die die gewünschten Eigenschaften aufweisen, sollen schließlich für den Aufbau eines Diamant-Monchromator-Prototyps herangezogen werden.

Hochgestecktes Ziel mit einer Fläche von 250 Quadratzentimetern

Bei ihrem konstituierenden Projekttreffen am vorigen Donnerstag haben die beteiligten Forscher aus Grenoble, München, Berlin und Augsburg ein entsprechend detailliertes gemeinsames Arbeitsprogramm festgelegt. Im Bewusstsein, dass noch sehr viel detaillierte Forschungs- und Entwicklungsarbeit vor ihm und seinem Projektmitarbeiter Dr. Stefan Gsell liegt, ist Schreck optimistisch, "dass wir das hochgesteckte Ziel eines Diamant-Monochromators mit einer Fläche von 250 Quadratzentimetern binnen der kommenden drei Jahre erreichen können."

Auch wirtschaftlich interessante Perspektiven

Wie die bisherigen, so werden auch die neuen, in Kooperation mit den Neutronenforschungszentren erfolgenden Forschungen der Diamant-Gruppe des Lehrstuhls Stritzker vom Anwenderzentrum Material- und Umweltforschung (AMU) der Universität Augsburg massiv finanziell unterstützt. "Mittelfristig nämlich eröffnen diese Entwicklungen auch eine wirtschaftlich interessante Perspektive", ist Stritzker sich sicher.

Ansprechpartner:
Dr. Matthias Schreck
Lehrstuhl für Experimentalphysik IV (Prof. Dr. Bernd Stritzker)
Institut für Physik der Universität Augsburg
D-86135 Augsburg
Telefon +49(0)821-598-3401
matthias.schreck@physik.uni-augsburg.de
Zur Diamantforschung am Lehrstuhl für Experimentalphysik IV:
http://www-2.physik.uni-augsburg.de/exp4/Page.php?Subj=Diamant-CVD
http://idw-online.de/pages/de/news29328
http://idw-online.de/pages/de/news12896

Klaus P. Prem | idw
Weitere Informationen:
http://www.uni-augsburg.de/

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht CAU-Forschungsteam entwickelt neues Verbundmaterial aus Kohlenstoffnanoröhren
22.11.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Material mit vielversprechenden Eigenschaften
22.11.2017 | Universität Konstanz

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kleine Strukturen – große Wirkung

Innovative Schutzschicht für geringen Verbrauch künftiger Rolls-Royce Flugtriebwerke entwickelt

Gemeinsam mit Rolls-Royce Deutschland hat das Fraunhofer-Institut für Werkstoff- und Strahltechnik IWS im Rahmen von zwei Vorhaben aus dem...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Zahnimplantate: Forschungsergebnisse und ihre Konsequenzen – 31. Kongress der DGI

22.11.2017 | Veranstaltungen

Tagung widmet sich dem Thema Autonomes Fahren

21.11.2017 | Veranstaltungen

Neues Elektro-Forschungsfahrzeug am Institut für Mikroelektronische Systeme

21.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Autonomes Fahren – und dann?

22.11.2017 | Verkehr Logistik

Material mit vielversprechenden Eigenschaften

22.11.2017 | Materialwissenschaften

Forscherteam am IST Austria definiert Funktion eines rätselhaften Synapsen-Proteins

22.11.2017 | Biowissenschaften Chemie