Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Löcher kommt es an

07.07.2015

Poröse Katalysator-Materialien verlieren ihre gleichmäßige Struktur, wenn ihre Porengröße zu klein ist. Das hat ein wissenschaftliches Team der Forschungsallianz der Universitäten Gießen und Marburg sowie des Karlsruher Instituts für Technologie durch ein neues Verfahren festgestellt, das der räumlichen Charakterisierung poröser Materialien dient. Die dabei gewonnenen Erkenntnisse können die Herstellung von Katalysatoren und Stofftrennungssystemen verbessern, hoffen die Forscher.

„Materialien mit ungeordneten Porenräumen stehen im Mittelpunkt vieler technischer Prozesse von großer wirtschaftlicher Bedeutung“, erklärt Professor Dr. Ulrich Tallarek von der Philipps-Universität, Koautor der aktuellen Studie. Beispiele für die Verwendung solcher Materialien sind Katalysatoren, die chemische Reaktionen beschleunigen, sowie Verfahren wie die Chromatografie, mit der Stoffe aufgetrennt werden können.


Mikroskopische Aufnahmen eines Kieselgel-Monoliths in zunehmender Vergrößerung zeigen die poröse Struktur des Materials.

(Abb.: Autoren)

Um Materialien mit den gewünschten Eigenschaften so ressourcenschonend wie möglich herstellen zu können, muss man wissen, wie die Form der Hohlräume den Stofftransport beeinflusst. „Man weiß noch kaum, wie bestimmte Parameter der Produktion sich auf die Eigenschaften des Materials auswirken“, erläutert Mitverfasser Professor Dr. Bernd Smarsly von der Justus-Liebig-Universität Gießen.

„Bislang waren morphologische Informationen für solche Materialien nur indirekt zugänglich. Dabei wurden Stofftransportdaten mithilfe einfacher Porenraum-Modelle morphologisch interpretiert; die Unzulänglichkeit der bestehenden Modelle ist schon lange bekannt.“

Die Arbeitsgruppen aus Marburg und Gießen haben nun gemeinsam mit dem Chemiker Dr. Christian Kübel aus Karlsruhe ein alternatives Verfahren zur Charakterisierung ungeordneter Porenräume vorgestellt – das Team verwendete Kieselgel-Monolithe als Modell, welche bereits intensiv in der Analytik eingesetzt werden. „Ein Ionenstrahl entfernt Schicht für Schicht des Materials von der Probe, und das Rasterelektronenmikroskop tastet jede frisch geschaffene Oberfläche ab“, schildert der Marburger Hochschullehrer die Methode.

Die aufgenommenen Bilder wurden zu einem Stapel zusammengesetzt. Zur Beschreibungen von Geometrie und Topologie des rekonstruierten Porenraums verwendeten die Wissenschaftler statistische Methoden, die sich auch auf andere poröse Materialien anwenden lassen. „Die Rekonstruktion zeigt, wie der ungeordnete Porenraum tatsächlich aussieht, und ermöglicht eine direkte und exakte Bestimmung seiner Eigenschaften“, hebt Tallarek hervor.

Die Wissenschaftler stellten fest, dass die Gleichmäßigkeit des Materials leidet, wenn die Hohlräume zu klein geraten. Womöglich rührt das daher, dass die Struktur während des Herstellungsprozesses zu früh fixiert wird. Das Team hofft, dass seine neuen Erkenntnisse zu verbesserten Produktionsbedingungen beitragen, die zu den jeweils gewünschten Materialeigenschaften führen. Insbesondere könnten mit Hilfe dieser Methodik technische Katalysatoren und Batterieelektroden optimiert werden.

Die Forscher sind optimistisch, dass die synergistische Kooperation hinsichtlich Synthese und Charakterisierung zu weiteren hochkarätigen gemeinsamen Ergebnissen führen wird: „Die räumliche Nähe und die komplementäre Expertise der materialwissenschaftlichen Forschung in Marburg und Gießen sind sehr gute Voraussetzungen für Forschung auf hohem Niveau“, heben die beiden Professoren hervor.

Die Arbeit an der aktuellen Publikation wurde durch die Deutsche Forschungsgemeinschaft finanziell gefördert.

Originalveröffentlichung: Daniela Stoeckel & al.: Morphological analysis of physically reconstructed silica monoliths with submicrometer macropores: Effect of decreasing domain size on structural homogeneity, Langmuir 2015,
DOI: 10.1021/la5046018, URL: http://pubs.acs.org/doi/pdf/10.1021/la5046018

Gemeinsame Pressemitteilung der Philipps-Universität Marburg und der Justus-Liebig-Universität Gießen


Weitere Informationen:
Professor Dr. Ulrich Tallarek,
Fachbereich Chemie
Philipps-Universität Marburg
Tel.: 06421 28-25727 und -27061 (Kirsten Bubenheim, Sekretariat)
E-Mail: tallarek@staff.uni-marburg.de

Professor Dr. Bernd Smarsly,
Institut für Physikalische Chemie der
Justus-Liebig-Universität Gießen
Tel.: 0641 99-34590 und -34591 (Gwyneth Schulz, Sekretariat)
E-Mail: bernd.smarsly@phys.chemie.uni-giessen.de

Medienkontakt:
Justus-Liebig-Universität Gießen
Pressestelle
Tel.: 0641 99-12041
E-Mail: pressestelle@uni-giessen.de
Internet: http://www.uni-giessen.de

Philipps-Universität Marburg
Stabsstelle Wissenschaftskommunikation
Tel.: 06421 28-26219
E-Mail: pressestelle@uni-marburg.de
Internet: http://www.uni-marburg.de

Johannes Scholten | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Transparente Beschichtung für Alltagsanwendungen
20.11.2017 | Karlsruher Institut für Technologie

nachricht Der gestapelte Farbsensor
17.11.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Transparente Beschichtung für Alltagsanwendungen

Sport- und Outdoorbekleidung, die Wasser und Schmutz abweist, oder Windschutzscheiben, an denen kein Wasser kondensiert – viele alltägliche Produkte können von stark wasserabweisenden Beschichtungen profitieren. Am Karlsruher Institut für Technologie (KIT) haben Forscher um Dr. Bastian E. Rapp einen Werkstoff für solche Beschichtungen entwickelt, der sowohl transparent als auch abriebfest ist: „Fluoropor“, einen fluorierten Polymerschaum mit durchgehender Nano-/Mikrostruktur. Sie stellen ihn in Nature Scientific Reports vor. (DOI: 10.1038/s41598-017-15287-8)

In der Natur ist das Phänomen vor allem bei Lotuspflanzen bekannt: Wassertropfen perlen von der Blattoberfläche einfach ab. Diesen Lotuseffekt ahmen...

Im Focus: Ultrakalte chemische Prozesse: Physikern gelingt beispiellose Vermessung auf Quantenniveau

Wissenschaftler um den Ulmer Physikprofessor Johannes Hecker Denschlag haben chemische Prozesse mit einer beispiellosen Auflösung auf Quantenniveau vermessen. Bei ihrer wissenschaftlichen Arbeit kombinierten die Forscher Theorie und Experiment und können so erstmals die Produktzustandsverteilung über alle Quantenzustände hinweg - unmittelbar nach der Molekülbildung - nachvollziehen. Die Forscher haben ihre Erkenntnisse in der renommierten Fachzeitschrift "Science" publiziert. Durch die Ergebnisse wird ein tieferes Verständnis zunehmend komplexer chemischer Reaktionen möglich, das zukünftig genutzt werden kann, um Reaktionsprozesse auf Quantenniveau zu steuern.

Einer deutsch-amerikanischen Forschergruppe ist es gelungen, chemische Prozesse mit einer nie dagewesenen Auflösung auf Quantenniveau zu vermessen. Dadurch...

Im Focus: Leoniden 2017: Sternschnuppen im Anflug?

Gemeinsame Pressemitteilung der Vereinigung der Sternfreunde und des Hauses der Astronomie in Heidelberg

Die Sternschnuppen der Leoniden sind in diesem Jahr gut zu beobachten, da kein Mondlicht stört. Experten sagen für die Nächte vom 16. auf den 17. und vom 17....

Im Focus: «Kosmische Schlange» lässt die Struktur von fernen Galaxien erkennen

Die Entstehung von Sternen in fernen Galaxien ist noch weitgehend unerforscht. Astronomen der Universität Genf konnten nun erstmals ein sechs Milliarden Lichtjahre entferntes Sternensystem genauer beobachten – und damit frühere Simulationen der Universität Zürich stützen. Ein spezieller Effekt ermöglicht mehrfach reflektierte Bilder, die sich wie eine Schlange durch den Kosmos ziehen.

Heute wissen Astronomen ziemlich genau, wie sich Sterne in der jüngsten kosmischen Vergangenheit gebildet haben. Aber gelten diese Gesetzmässigkeiten auch für...

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

500 Kommunikatoren zu Gast in Braunschweig

20.11.2017 | Veranstaltungen

VDI-Expertenforum „Gefährdungsanalyse Trinkwasser"

20.11.2017 | Veranstaltungen

Technologievorsprung durch Textiltechnik

17.11.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Künstliche neuronale Netze: 5-Achs-Fräsbearbeitung lernt, sich selbst zu optimieren

20.11.2017 | Informationstechnologie

Tonmineral bewässert Erdmantel von innen

20.11.2017 | Geowissenschaften

Hemmung von microRNA-29 schützt vor Herzfibrosen

20.11.2017 | Biowissenschaften Chemie