Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf die Löcher kommt es an

07.07.2015

Poröse Katalysator-Materialien verlieren ihre gleichmäßige Struktur, wenn ihre Porengröße zu klein ist. Das hat ein wissenschaftliches Team der Forschungsallianz der Universitäten Gießen und Marburg sowie des Karlsruher Instituts für Technologie durch ein neues Verfahren festgestellt, das der räumlichen Charakterisierung poröser Materialien dient. Die dabei gewonnenen Erkenntnisse können die Herstellung von Katalysatoren und Stofftrennungssystemen verbessern, hoffen die Forscher.

„Materialien mit ungeordneten Porenräumen stehen im Mittelpunkt vieler technischer Prozesse von großer wirtschaftlicher Bedeutung“, erklärt Professor Dr. Ulrich Tallarek von der Philipps-Universität, Koautor der aktuellen Studie. Beispiele für die Verwendung solcher Materialien sind Katalysatoren, die chemische Reaktionen beschleunigen, sowie Verfahren wie die Chromatografie, mit der Stoffe aufgetrennt werden können.


Mikroskopische Aufnahmen eines Kieselgel-Monoliths in zunehmender Vergrößerung zeigen die poröse Struktur des Materials.

(Abb.: Autoren)

Um Materialien mit den gewünschten Eigenschaften so ressourcenschonend wie möglich herstellen zu können, muss man wissen, wie die Form der Hohlräume den Stofftransport beeinflusst. „Man weiß noch kaum, wie bestimmte Parameter der Produktion sich auf die Eigenschaften des Materials auswirken“, erläutert Mitverfasser Professor Dr. Bernd Smarsly von der Justus-Liebig-Universität Gießen.

„Bislang waren morphologische Informationen für solche Materialien nur indirekt zugänglich. Dabei wurden Stofftransportdaten mithilfe einfacher Porenraum-Modelle morphologisch interpretiert; die Unzulänglichkeit der bestehenden Modelle ist schon lange bekannt.“

Die Arbeitsgruppen aus Marburg und Gießen haben nun gemeinsam mit dem Chemiker Dr. Christian Kübel aus Karlsruhe ein alternatives Verfahren zur Charakterisierung ungeordneter Porenräume vorgestellt – das Team verwendete Kieselgel-Monolithe als Modell, welche bereits intensiv in der Analytik eingesetzt werden. „Ein Ionenstrahl entfernt Schicht für Schicht des Materials von der Probe, und das Rasterelektronenmikroskop tastet jede frisch geschaffene Oberfläche ab“, schildert der Marburger Hochschullehrer die Methode.

Die aufgenommenen Bilder wurden zu einem Stapel zusammengesetzt. Zur Beschreibungen von Geometrie und Topologie des rekonstruierten Porenraums verwendeten die Wissenschaftler statistische Methoden, die sich auch auf andere poröse Materialien anwenden lassen. „Die Rekonstruktion zeigt, wie der ungeordnete Porenraum tatsächlich aussieht, und ermöglicht eine direkte und exakte Bestimmung seiner Eigenschaften“, hebt Tallarek hervor.

Die Wissenschaftler stellten fest, dass die Gleichmäßigkeit des Materials leidet, wenn die Hohlräume zu klein geraten. Womöglich rührt das daher, dass die Struktur während des Herstellungsprozesses zu früh fixiert wird. Das Team hofft, dass seine neuen Erkenntnisse zu verbesserten Produktionsbedingungen beitragen, die zu den jeweils gewünschten Materialeigenschaften führen. Insbesondere könnten mit Hilfe dieser Methodik technische Katalysatoren und Batterieelektroden optimiert werden.

Die Forscher sind optimistisch, dass die synergistische Kooperation hinsichtlich Synthese und Charakterisierung zu weiteren hochkarätigen gemeinsamen Ergebnissen führen wird: „Die räumliche Nähe und die komplementäre Expertise der materialwissenschaftlichen Forschung in Marburg und Gießen sind sehr gute Voraussetzungen für Forschung auf hohem Niveau“, heben die beiden Professoren hervor.

Die Arbeit an der aktuellen Publikation wurde durch die Deutsche Forschungsgemeinschaft finanziell gefördert.

Originalveröffentlichung: Daniela Stoeckel & al.: Morphological analysis of physically reconstructed silica monoliths with submicrometer macropores: Effect of decreasing domain size on structural homogeneity, Langmuir 2015,
DOI: 10.1021/la5046018, URL: http://pubs.acs.org/doi/pdf/10.1021/la5046018

Gemeinsame Pressemitteilung der Philipps-Universität Marburg und der Justus-Liebig-Universität Gießen


Weitere Informationen:
Professor Dr. Ulrich Tallarek,
Fachbereich Chemie
Philipps-Universität Marburg
Tel.: 06421 28-25727 und -27061 (Kirsten Bubenheim, Sekretariat)
E-Mail: tallarek@staff.uni-marburg.de

Professor Dr. Bernd Smarsly,
Institut für Physikalische Chemie der
Justus-Liebig-Universität Gießen
Tel.: 0641 99-34590 und -34591 (Gwyneth Schulz, Sekretariat)
E-Mail: bernd.smarsly@phys.chemie.uni-giessen.de

Medienkontakt:
Justus-Liebig-Universität Gießen
Pressestelle
Tel.: 0641 99-12041
E-Mail: pressestelle@uni-giessen.de
Internet: http://www.uni-giessen.de

Philipps-Universität Marburg
Stabsstelle Wissenschaftskommunikation
Tel.: 06421 28-26219
E-Mail: pressestelle@uni-marburg.de
Internet: http://www.uni-marburg.de

Johannes Scholten | idw - Informationsdienst Wissenschaft

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Perowskit-Solarzellen: Es muss gar nicht perfekt sein
15.01.2018 | Helmholtz-Zentrum Berlin für Materialien und Energie GmbH

nachricht Fraunhofer IMWS testet umweltfreundliche Mikroplastik-Alternativen in Kosmetikartikeln
11.01.2018 | Fraunhofer-Institut für Mikrostruktur von Werkstoffen und Systemen IMWS

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vollmond-Dreierlei am 31. Januar 2018

Am 31. Januar 2018 fallen zum ersten Mal seit dem 30. Dezember 1982 "Supermond" (ein Vollmond in Erdnähe), "Blutmond" (eine totale Mondfinsternis) und "Blue Moon" (ein zweiter Vollmond im Kalendermonat) zusammen - Beobachter im deutschen Sprachraum verpassen allerdings die sichtbaren Phasen der Mondfinsternis.

Nach den letzten drei Vollmonden am 4. November 2017, 3. Dezember 2017 und 2. Januar 2018 ist auch der bevorstehende Vollmond am 31. Januar 2018 ein...

Im Focus: Maschinelles Lernen im Quantenlabor

Auf dem Weg zum intelligenten Labor präsentieren Physiker der Universitäten Innsbruck und Wien ein lernfähiges Programm, das eigenständig Quantenexperimente entwirft. In ersten Versuchen hat das System selbständig experimentelle Techniken (wieder)entdeckt, die heute in modernen quantenoptischen Labors Standard sind. Dies zeigt, dass Maschinen in Zukunft auch eine kreativ unterstützende Rolle in der Forschung einnehmen könnten.

In unseren Taschen stecken Smartphones, auf den Straßen fahren intelligente Autos, Experimente im Forschungslabor aber werden immer noch ausschließlich von...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Fliegen wird smarter – Kommunikationssystem LYRA im Lufthansa FlyingLab

• Prototypen-Test im Lufthansa FlyingLab
• LYRA Connect ist eine von drei ausgewählten Innovationen
• Bessere Kommunikation zwischen Kabinencrew und Passagieren

Die Zukunft des Fliegens beginnt jetzt: Mehrere Monate haben die Finalisten des Mode- und Technologiewettbewerbs „Telekom Fashion Fusion & Lufthansa FlyingLab“...

Im Focus: Ein Atom dünn: Physiker messen erstmals mechanische Eigenschaften zweidimensionaler Materialien

Die dünnsten heute herstellbaren Materialien haben eine Dicke von einem Atom. Sie zeigen völlig neue Eigenschaften und sind zweidimensional – bisher bekannte Materialien sind dreidimensional aufgebaut. Um sie herstellen und handhaben zu können, liegen sie bislang als Film auf dreidimensionalen Materialien auf. Erstmals ist es Physikern der Universität des Saarlandes um Uwe Hartmann jetzt mit Forschern vom Leibniz-Institut für Neue Materialien gelungen, die mechanischen Eigenschaften von freitragenden Membranen atomar dünner Materialien zu charakterisieren. Die Messungen erfolgten mit dem Rastertunnelmikroskop an Graphen. Ihre Ergebnisse veröffentlichen die Forscher im Fachmagazin Nanoscale.

Zweidimensionale Materialien sind erst seit wenigen Jahren bekannt. Die Wissenschaftler André Geim und Konstantin Novoselov erhielten im Jahr 2010 den...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

Veranstaltungen

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungen

Transferkonferenz Digitalisierung und Innovation

22.01.2018 | Veranstaltungen

Kongress Meditation und Wissenschaft

19.01.2018 | Veranstaltungen

VideoLinks Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

15. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

22.01.2018 | Veranstaltungsnachrichten

Forschungsteam schafft neue Möglichkeiten für Medizin und Materialwissenschaft

22.01.2018 | Biowissenschaften Chemie

Ein Haus mit zwei Gesichtern

22.01.2018 | Architektur Bauwesen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics