Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Auf der Nanoskala Sektorwände versetzen

08.06.2015

Wissenschaftler der ETH Zürich können die magnetische und elektrische innere Ordnung einer intensiv erforschten Materialklasse, den Multiferroika, sichtbar machen und gezielt verändern. Dies öffnet Türen für vielversprechende elektronische Anwendungen. Speziell interessieren sich die Forschenden für die Wände der geordneten Bereiche.

Die meisten magnetischen Materialen sind etwas komplizierter aufgebaut als ein handelsüblicher Küchenmagnet: Sie haben nicht nur einen Nord- und einen Südpol, sondern setzen sich aus einer Vielzahl oft nur Nanometer grosser Sektoren zusammen, in denen die magnetische Achse jeweils in eine andere Richtung zeigt. Diese Sektoren werden als Domänen bezeichnet.


Strontiummanganit ist ein Multiferroikum, das in einer dünnen Kristallschicht vorliegt. In dieser vergrösserten Aufnahme sind die einzelnen Domänen sichtbar, welche nur rund 100 Nanometer breit sind. (Bild: Becher C et al. Nature Nanotechnology 2015)

Manfred Fiebig, Professor für multifunktionale ferroische Materialen an der ETH Zürich, untersuchte in den vergangenen Jahren in bestimmten Materialien die Wände, an denen die Domänen aneinandergrenzen. «Das Innenleben eines Materials mit seinen Domänen ist das eine», sagt Fiebig. «Ganz interessante Dinge passieren jedoch an den Grenzwänden dieser Domänen.»

Fiebig hat sich dabei einer ganz speziellen Klasse von Materialen verschrieben: den Oxiden, und zwar insbesondere solchen mit sogenannt multiferroischen Eigenschaften. Das sind kristalline Materialien, die einerseits magnetisch geordnet sind (das heisst, einen magnetischen Nord- und Südpol aufweisen), gleichzeitig aber auch eine elektrische Ordnung aufweisen (das heisst, die elektrische Ladung ist im Material so verteilt, dass es zusätzlich zum magnetischen auch einen elektrischen Plus- und Minuspol gibt).

«Weil in multiferroischen Materialen eine magnetische und eine elektrische Ordnung zusammenkommen, sind auch Kreuzkopplungen möglich: Man kann zum Beispiel den magnetischen Zustand mit einer elektrischen Spannung ändern», erklärt Fiebig. Diese Eigenschaften machen die Materialen auch für viele Anwendungen interessant und sind der Hauptgrund, warum Multiferroika derzeit von der Wissenschaft so intensiv erforscht werden.

Winzige Kondensatoren

Gemeinsam mit Forscherkollegen hat Fiebig die Domänengrenzen in bestimmten Multiferroika genau untersucht und dieser Tage dazu zwei Fachartikel veröffentlicht. Darin konnten die Wissenschaftler zeigen, dass sich die elektrische Leitfähigkeit der Domänenwände von jener des Materials als Ganzes unterscheidet. In einem Material, Strontiummanganit, konnten sie zeigen, dass Domänenwände elektrischen Stromfluss unterdrücken.

«Ein Material mit nicht-leitenden Wänden in einer leitenden Umgebung kann in der Elektronik sehr nützlich sein», so Fiebig. Denkbar wäre beispielsweise, damit elektronische Bauteile herzustellen, in denen die nanometergrossen Domänen als winzige Kondensatoren wirken, die man getrennt voneinander elektrisch aufladen kann.

«So könnte man ein neues ladungsbasiertes Speichermedium schaffen», sagt Fiebig. Um in einer Domäne die Ladung zu ändern, benötige man nur einen Spannungspuls, es müsse dazu kein Strom fliessen. Ein solches Speichermedium wäre im Vergleich zu heutigen energieeffizienter. Zudem entstünde bei der Datenspeicherung keine Wärme, die man abführen müsse, weshalb man solche Speichermedien sehr viel kleiner bauen könnte.

Die Arbeit verfassten Wissenschaftler aus der Gruppe von Manfred Fiebig gemeinsam mit solchen aus der Gruppe von ETH-Professorin Nicola Spaldin sowie der Universität Saragossa. Spaldin und ihre Mitarbeiter trugen die theoretische Erklärung bei, warum in Strontiummanganit die Domänenwände nicht leiten. Fiebig erklärt es so: Kristalline Materialien seien niemals perfekt aufgebaut. An bestimmten Stellen im Kristallgitter der Oxide würden einzelne Sauerstoffatome fehlen. Die Wissenschaftler konnten nun zeigen, dass sich solche «Sauerstoff-Lücken» mit Vorliebe an den Domänengrenzen ansammelten und dort den Stromfluss blockierten.

Leitfähigkeit manuell verändern

In Untersuchungen an einem zweiten multiferroischen Material, Terbiummanganit, konnten Wissenschaftler aus Fiebigs Gruppe gemeinsam mit Kollegen aus Japan zeigen, dass sich die Domänengrenzen mit elektrischen Feldern unter bestimmten Bedingungen auch verschieben lassen. «Dies ist ein Vorteil gegenüber herkömmlichen Halbleitermaterialien, die eine gewachsene, feste Struktur haben», so Fiebig. Ausserdem fanden die Forschenden in diesem Material Bedingungen, unter denen sich die Magnetisierung der Domänen sowie die Leitfähigkeit der Domänengrenzen ändern lassen, ohne dabei die Position der Grenzen zu ändern.

Voraussetzung für diese Untersuchungen ist eine Technik, mit der man die Domänen und deren Grenzen überhaupt sichtbar machen kann. Dies ist derzeit einzig mit einer bestimmten optischen Methode, der Frequenzverdopplung, möglich. Dazu bestrahlt man das Material mit einem sehr intensiven, gepulsten Laserstrahl einer bestimmten Farbe.

Als Reaktion darauf sendet das Material andersfarbiges Licht aus, woraus die Wissenschaftler Informationen über die magnetische und elektrische Struktur des Materials gewinnen können. ETH-Professor Fiebig war in den vergangenen Jahren die treibende Kraft hinter der Entwicklung, diese optische Methode zur Untersuchung der inneren Ordnung von Materialien zu nutzen.

Neue technische Möglichkeiten

Dass es nun in einem Multiferroikum möglich ist, die Domänenwände nicht nur zu sehen, sondern sie auch gezielt zu verschieben oder ihre Leitfähigkeit zu verändern, öffnet die Türen für neue technische Möglichkeiten. Konkrete Anwendungen lägen zwar noch in der Ferne, stellt Fiebig klar. Doch die Erkenntnisse könnten später nicht nur in Datenspeicher, sondern auch in Sensoren oder komplexe elektronische Bauteile fliessen.

«Wenn man in einem Material die Leitfähigkeit verändern kann, hat man einen Schalter – in unserem Fall einen, den man steuern kann, ohne etwas mechanisch zu bewegen, und der somit nicht anfällig ist auf Materialermüdung», sagt Fiebig und denkt derweil schon an den nächsten Entwicklungsschritt: Im Moment könne man in Multiferroika einen magnetischen Zustand mit einem elektrischen Feld verändern. In Zukunft sei es vielleicht sogar möglich, auf das elektrische Feld zu verzichten und den Zustand rein optisch zu schalten. Dies, indem man mit den intensiven Lichtpulsen nicht nur die innere Struktur sichtbar macht, sondern sie damit gleich verändert.

Literaturhinweise

Matsubara M, Manz S, Mochizuki M, Kubacka T, Iyama A, Aliouane N, Kimura T, Johnson SL, Meier D, Fiebig M: Magnetoelectric domain control in multiferroic TbMnO3. Science, 5. Juni 2015, doi: 10.1126/science.1260561 [http://dx.doi.org/10.1126/science.1260561]

Becher C, Maurel L, Aschauer U, Lilienblum M, Magén C, Meier D, Langenberg E, Trassin M, Blasco J, Krug JP, Algarabel PA, Spaldin NA, Pardo JA, Fiebig M: Strain-induced coupling of electrical polarization and structural defects in SrMnO3 films. Nature Nanotechnology, 1. Juni 2015, doi: 10.1038/nnano.2015.108 [http://dx.doi.org/10.1038/nnano.2015.108]

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2015/06/auf-der-na...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Bessere Anwendungsmöglichkeiten für Laserlicht
28.03.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Biegsame Touchscreens: Neues Herstellungsverfahren für transparente Elektronik verbessert
28.03.2017 | Universität des Saarlandes

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Das anwachsende Ende der Ordnung

Physiker aus Konstanz weisen sogenannte Mermin-Wagner-Fluktuationen experimentell nach

Ein Kristall besteht aus perfekt angeordneten Teilchen, aus einer lückenlos symmetrischen Atomstruktur – dies besagt die klassische Definition aus der Physik....

Im Focus: Wegweisende Erkenntnisse für die Biomedizin: NAD⁺ hilft bei Reparatur geschädigter Erbinformationen

Eine internationale Forschergruppe mit dem Bayreuther Biochemiker Prof. Dr. Clemens Steegborn präsentiert in 'Science' neue, für die Biomedizin wegweisende Forschungsergebnisse zur Rolle des Moleküls NAD⁺ bei der Korrektur von Schäden am Erbgut.

Die Zellen von Menschen und Tieren können Schäden an der DNA, dem Träger der Erbinformation, bis zu einem gewissen Umfang selbst reparieren. Diese Fähigkeit...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Organisch-anorganische Heterostrukturen mit programmierbaren elektronischen Eigenschaften

29.03.2017 | Energie und Elektrotechnik

Klein bestimmt über groß?

29.03.2017 | Physik Astronomie

OLED-Produktionsanlage aus einer Hand

29.03.2017 | Messenachrichten