Antireflex-Beschichtungen ermöglichen großflächige holographische Displays

Großflächige Präzisionsbeschichtungen für optische Anwendungen Fraunhofer FEP

Wäre es nicht aufregend, wenn man mitten im Film sitzen würde, ohne lästige 3D-Brillen auf der Nase zu haben? Aber nicht nur für Fernsehfans wären holographische Displays ein Riesenfortschritt: Mediziner könnten räumliche Bilder aus dem Körperinneren anschauen und dabei Bewegungen von Organen im Detail betrachten.

Die Dresdner Firma SeeReal Technologies GmbH arbeitet an solchen Displays. Holographische Displays nutzen bestimmte Eigenschaften von Laserlicht zur vollständig dreidimensionalen Darstellung von Bildern. Dafür ist eine Aufweitung des Laserstrahls auf Displaygröße notwendig.

Man kann sich leicht vorstellen, dass ein Laserstrahl mit dem Durchmesser eines Fernsehdisplays nur schwer zu realisieren ist. Eine Möglichkeit auf klassischem Weg wären große Linsensysteme, die aber nicht nur klobig, sondern auch aufwändig herzustellen und teuer sind.

Wissenschaftler vom Fraunhofer FEP haben nun in einem gemeinsamen Projekt mit SeeReal Technologies Beschichtungen entwickelt, bei denen Laser geringerer Leistungsklassen und Abmessungen eine Ausleuchtung in Displaygröße ermöglichen.

Der Laser wird unter einem sehr flachen Winkel (hier 5°, bzw. 85° zum Lot) auf eine Glasscheibe eingestrahlt. Ähnlich wie sich der Schatten eines Menschen in der untergehenden Sonne verlängert und sich damit seine projizierte Fläche auf der Erde vergrößert, vergrößert sich auch der Durchmesser des Laserstrahls. Aus einem kleinen Punkt wird eine langgezogene Ellipse.

In einem zweiten Schritt trifft die langgezogene Ellipse erneut unter 5° auf eine zweite Scheibe, wobei die Ellipse um die andere Richtung, die „kurze Achse“, wieder zu einem Kreis gestreckt wird. Dieser Kreis hat dann einen ausreichend großen Durchmesser, um den ganzen Bildschirm auszuleuchten.

Leuchtet man mit einem Laser jedoch unter einem solchen flachen Winkel auf eine unbeschichtete Scheibe, werden ca. 73 % des Strahles reflektiert. Bei zwei „Ausdehnungsschritten“ würden über 90 % der ursprünglichen Intensität verloren gehen!

„Wir haben eine Anti-Reflex-Beschichtung entwickelt, die den Anteil des transmittierten Lichts deutlich erhöht.“, erklärt Dr. Daniel Glöß, Abteilungsleiter für dynamische Beschichtungen im Bereich Präzisionsbeschichtung des Fraunhofer FEP.

„Mittels Sputtertechnologie werden dünne Schichten auf dem Glas abgeschieden. Diese bestehen abwechselnd aus zwei verschiedenen Materialien unterschiedlicher optischer Dichte. Durch Vielfach-Schichtsysteme können auch komplizierte optische Funktionen erzielt werden, die zum Beispiel nur bestimmte Farben des Lichts durchlassen und andere reflektieren.“

Mit seiner neuen Präzisionsbeschichtungsanlage PreSensLine ist das Fraunhofer FEP für die hochpräzise Beschichtung von größeren Substraten bestens ausgerüstet. So konnten bereits funktionstüchtige Scheiben der Größe DIN A3 (ca. 300 × 400 mm² bzw. 28“ Bildschirmdiagonale) beschichtet werden. Die besondere Schwierigkeit ergibt sich aus der Kombination von extremen Anforderungen an die Präzision, Reproduzierbarkeit und Homogenität der Schichten auf dieser großen Fläche.

Wie bei bisherigen Farbfernsehgeräten sollen die Farbeindrücke auch bei holographischen Displays aus einer Mischung aus rot, grün und blau entstehen. Für die Anti-Reflex-Beschichtung werden bei diesem Demonstrator 24 Schichten benötigt. Die Schichtdicke aller 24 Schichten muss bis auf wenige Millionstel Millimeter (Nanometer) korrekt getroffen und über die gesamte Fläche konstant sein.

Das entspricht wenigen 100 Atomlagen, oder anders ausgedrückt: Würde man die beschichtete Scheibe auf die Größe eines Fußballfeldes vergrößern, dann entsprächen die erlaubten Toleranzen der einzelnen Schichtdicken etwa einem Hundertstel der Dicke eines Menschenhaares. Bereits geringfügig stärkere Abweichungen führen nicht mehr zur gewünschten Entspiegelung und die Bildqualität würde stark beeinträchtigt bzw. das Bild farbverzerrt erscheinen.

Die am Fraunhofer FEP gefertigten Anti-Reflex-Beschichtungen wurden in dem Demonstrator von SeeReal Technologies verwendet. Dort ist Holographie bereits Realität. Perspektivisches Ziel ist es, deutlich größere Displays im Quadratmeterbereich mit gleicher Präzision zu fertigen. Dafür ist das Fraunhofer FEP gut gerüstet. Es verfügt über modernste Anlagentechnik sowie das Know-How zur Herstellung anspruchsvoller Schichtsysteme und zur kundenspezifischen Entwicklung und Fertigung der benötigten Beschichtungskomponenten.

Erfahren Sie mehr zu unseren Arbeiten:

Daniel Glöß

Bidirectional Expansion of Collimated Laser Beam as Backlight for Holographic 3D Display
Vortrag Exhibitor Forum, Session 6: Innovative Display Technologies and Applications
Donnerstag, 4. Juni 2015 | 9:15 Uhr | Executive Ballroom 210

John Fahlteich

Roll-to-Roll Manufacturing of Functional Substrates and Encapsulation Films for Organic Electronics: Technologies and Challenges
Vortrag Symposium: 10.1 (Invited Paper),
Dienstag, 2. Juni 2015 | 14:00 – 14:20 Uhr | Ballroom 220C

Philipp Wartenberg

SVGA Full-Color Bidirectional OLED Microdisplay
Vortrag Symposium: 15.5 (Late-News Paper)
Dienstag, 2. Juni 2015 | 17:00 – 17:10 Uhr | Ballroom 220B

Manuela Junghähnel

Advanced Processing of ITO and IZO Thin Films on Flexible Glass
Poster Session: Display Manufacturing, P.65
Donnerstag, 4. Juni 2015 | 16:00 – 19:00 Uhr | Ballroom 220A

Susan Mühl

Optimized anodes for flexible large area OLEDs
Poster Session: OLEDs, P.133
Donnerstag, 4. Juni 2015 | 16:00 – 19:00 Uhr | Ballroom 220A

Pressekontakt:

Frau Annett Arnold

Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP | Phone +49 351 2586 452 | annett.arnold@fep.fraunhofer.de
Winterbergstraße 28 | 01277 Dresden | Deutschland | www.fep.fraunhofer.de

http://s.fhg.de/2cY

Media Contact

Annett Arnold Fraunhofer-Institut für Organische Elektronik, Elektronenstrahl- und Plasmatechnik FEP

Alle Nachrichten aus der Kategorie: Materialwissenschaften

Die Materialwissenschaft bezeichnet eine Wissenschaft, die sich mit der Erforschung – d. h. der Entwicklung, der Herstellung und Verarbeitung – von Materialien und Werkstoffen beschäftigt. Biologische oder medizinische Facetten gewinnen in der modernen Ausrichtung zunehmend an Gewicht.

Der innovations report bietet Ihnen hierzu interessante Artikel über die Materialentwicklung und deren Anwendungen, sowie über die Struktur und Eigenschaften neuer Werkstoffe.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Nanofasern befreien Wasser von gefährlichen Farbstoffen

Farbstoffe, wie sie zum Beispiel in der Textilindustrie verwendet werden, sind ein großes Umweltproblem. An der TU Wien entwickelte man nun effiziente Filter dafür – mit Hilfe von Zellulose-Abfällen. Abfall…

Entscheidender Durchbruch für die Batterieproduktion

Energie speichern und nutzen mit innovativen Schwefelkathoden. HU-Forschungsteam entwickelt Grundlagen für nachhaltige Batterietechnologie. Elektromobilität und portable elektronische Geräte wie Laptop und Handy sind ohne die Verwendung von Lithium-Ionen-Batterien undenkbar. Das…

Wenn Immunzellen den Körper bewegungsunfähig machen

Weltweit erste Therapie der systemischen Sklerose mit einer onkologischen Immuntherapie am LMU Klinikum München. Es ist ein durchaus spektakulärer Fall: Nach einem mehrwöchigen Behandlungszyklus mit einem immuntherapeutischen Krebsmedikament hat ein…

Partner & Förderer