Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Angenehmes Raumklima durch poröse Gläser

30.07.2014

Die richtige Luftfeuchtigkeit und Temperatur beeinflussen das Wohnklima entscheidend. Künftig schaffen in Putze eingearbeitete poröse Gläser ein Wohlfühlklima in Räumen. Sie regulieren die Feuchtigkeit besonders gut und beugen Schimmel vor.

Kaum etwas beunruhigt Mieter und Eigentümer so sehr wie Schimmel an den Wänden. Die schwarzen Flecken sehen nicht nur hässlich aus, sondern gefährden die Gesundheit. Vor allem durch verschärfte Dämmstandards kann es zu hoher Feuchtigkeit in Wohnräumen kommen – der Hauptursache für Schimmel.


Rasterelektronenmikroskopaufnahme (REM) von Glasflakes.

© Fraunhofer ISC / F. Somorowsky

Denn mit der 2002 in Kraft getretenen Energieeinsparverordnung hat die Bundesregierung festgelegt, dass Außenbauteile von Neubauten und sanierten Altbauten luftdicht ausgeführt werden müssen, damit möglichst keine Wärme entweicht. Die Kehrseite der Medaille: Die Feuchtigkeit bleibt in den Zimmern gefangen. »Feuchteregulierende Baustoffe gewinnen daher immer mehr an Bedeutung«, sagt Ferdinand Somorowksy, Wissenschaftler am Fraunhofer-Institut für Silicatforschung ISC in Würzburg.

Besonders schnelle Wasseraufnahme

Der Forscher und sein Team entwickeln gemeinsam mit der Universität Bayreuth und der Firma Keimfarben GmbH Zusätze für Farben und Putze, die ausgleichend auf das Raumklima, vor allem auf die Raumfeuchte wirken. Als Additive verwenden die Projektpartner künstlich hergestellte poröse Gläser, deren Porengröße, -volumen und Partikelform sich gezielt beeinflussen lassen – ein Vorteil dieser anorganischen Materialien gegenüber natürlichen Werkstoffen.

Die Glaspartikel, die insbesondere in der Form von Flakes untersucht wurden, nehmen Wasser aus der Raumluft besonders schnell auf, speichern es und geben es langsam wieder ab. »Wasser ist als unsichtbarer Dampf ein Bestandteil der Luft. Damit das Raumklima angenehm ist und bleibt, muss das Wasser, das wir beim Duschen, Kochen und Schwitzen zusätzlich an die Raumluft abgeben, irgendwie auch wieder abgeführt werden.

Wände und Decken bieten große Flächen, die für das Feuchtemanagement genutzt werden können. Wenn wir die Glaspartikel in Gipse, Putze und Farben für Innenwände einbringen, können sie täglich und jahreszeitlich bedingte Feuchteschwankungen abpuffern. Die Wohnung ist dann einfach behaglicher. 95 bis 98 Prozent der bislang erhältlichen Putze haben keine Zusätze«, erläutert Somorowsky.

Die Glaspartikel basieren auf Vycor-Glas®. Bei diesem Glas können sich durch eine geeignete Herstellung Poren bilden, die man durch Anpassen der Prozessparameter gezielt einstellen kann. Im Gegensatz zu anderen Materialien mit Sorptionseigenschaften wie Zeolithe oder Keramiken lassen sich runde Partikel, Fasern und Flakes produzieren. Möglich sind Füllstoffe mit Porengrößen zwischen wenigen Nano- bis zu mehreren Mikrometern.

»Da sich die Porosität und die Größe der Poren exakt einstellen lässt, kann man die Feuchtigkeit effektiv regulieren. Indem wir die Porengröße minimal verändern, passen wir das Material für unterschiedliche Temperaturen und verschiedene Anwendungen wie Wohn-, Feucht – oder Kellerräume an«, sagt der Forscher. Die ungiftigen und nicht brennbaren porösen Gläser sind preisgünstig und konnten schon in Vorversuchen in großen Mengen von mehreren 100 Kilogramm hergestellt werden.

In Praxistests haben die Wissenschaftler nachgewiesen, dass Putze mit eingearbeiteten Glasflakes im Vergleich zu Zeolithen und Holzfaserplatten, die ebenfalls zur Feuchteregulierung verwendet werden, deutlich mehr Feuchtigkeit aufnehmen und diese auch wieder vollständig abgeben können. Die Tests wurden bei konstanter Temperatur und einer Luftfeuchtigkeit durchgeführt, die einem normalen Innenraumklima nachempfunden wurde.

Auch in weiteren Untersuchungen mit Referenzputzen erwies sich das anorganische Material als überlegen. Bei steigender Luftfeuchtigkeit war die Massenzunahme und damit die Wasseraufnahme bei dem mit Glasflakes versetzten Putz deutlich höher als bei den Vergleichsmaterialien. »In einem 30 m3-Raum stehen über Decke und Wände etwa  40 m2 Fläche für einen feuchteregulierenden Putz zur Verfügung. Um die Luftfeuchtigkeit von 72 auf 47 Prozent Luftfeuchte zu reduzieren, müssten rund 180 Milliliter Wasser aufgenommen werden können. Tatsächlich kann unser Putz mit Glasflakes mehr als einen halben Liter Wasser adsorbieren«, so Somorowsky. Auch ließen sich Schimmelpilz hemmende Substanzen in den Putz einbringen.

Ein weiterer positiver Effekt der porösen Glasflakes: Sie beeinflussen die Energiebilanz eines Gebäudes. Wird bei hoher Luftfeuchte Wasser an der Glasoberfläche angereichert, macht die dabei freiwerdende Energie die Raumluft trockener und wärmer. Bei geringer Luftfeuchte und Desorption wird die Raumluft abgekühlt und feuchter. Diese Vorgänge laufen sowohl im Winter als auch im Sommer ab, so dass man primäre Energie zum Heizen oder Kühlen einsparen kann. Vor allem beim Heizungsbetrieb verbessern gleichmäßig in der Putzschicht verteilte Glasflakes das Raumklima.

Derzeit prüfen die Projektpartner wie sich die glasbasierten Werkstoffe unter zusätzlichen Farbschichten und Tapeten verhalten. Sie gehen davon aus, dass es noch etwa zwei Jahre dauern wird, bis die umweltfreundlichen, feuchteregulierenden Putze in den Fachhandel kommen.

Ferdinand Somorowsky | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/August/angenehmes-raumklima-durchporoese-glaeser.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Quantenanomalien: Das Universum in einem Kristall
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Projekt »ADIR«: Laser bergen wertvolle Werkstoffe
21.07.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Einblicke unter die Oberfläche des Mars

Die Region erstreckt sich über gut 1000 Kilometer entlang des Äquators des Mars. Sie heißt Medusae Fossae Formation und über ihren Ursprung ist bislang wenig bekannt. Der Geologe Prof. Dr. Angelo Pio Rossi von der Jacobs University hat gemeinsam mit Dr. Roberto Orosei vom Nationalen Italienischen Institut für Astrophysik in Bologna und weiteren Wissenschaftlern einen Teilbereich dieses Gebietes, genannt Lucus Planum, näher unter die Lupe genommen – mithilfe von Radarfernerkundung.

Wie bei einem Röntgenbild dringen die Strahlen einige Kilometer tief in die Oberfläche des Planeten ein und liefern Informationen über die Struktur, die...

Im Focus: Molekulares Lego

Sie können ihre Farbe wechseln, ihren Spin verändern oder von fest zu flüssig wechseln: Eine bestimmte Klasse von Polymeren besitzt faszinierende Eigenschaften. Wie sie das schaffen, haben Forscher der Uni Würzburg untersucht.

Bei dieser Arbeit handele es sich um ein „Hot Paper“, das interessante und wichtige Aspekte einer neuen Polymerklasse behandelt, die aufgrund ihrer Vielfalt an...

Im Focus: Das Universum in einem Kristall

Dresdener Forscher haben in Zusammenarbeit mit einem internationalen Forscherteam einen unerwarteten experimentellen Zugang zu einem Problem der Allgemeinen Realitätstheorie gefunden. Im Fachmagazin Nature berichten sie, dass es ihnen in neuartigen Materialien und mit Hilfe von thermoelektrischen Messungen gelungen ist, die Schwerkraft-Quantenanomalie nachzuweisen. Erstmals konnten so Quantenanomalien in simulierten Schwerfeldern an einem realen Kristall untersucht werden.

In der Physik spielen Messgrößen wie Energie, Impuls oder elektrische Ladung, welche ihre Erscheinungsform zwar ändern können, aber niemals verloren gehen oder...

Im Focus: Manipulation des Elektronenspins ohne Informationsverlust

Physiker haben eine neue Technik entwickelt, um auf einem Chip den Elektronenspin mit elektrischen Spannungen zu steuern. Mit der neu entwickelten Methode kann der Zerfall des Spins unterdrückt, die enthaltene Information erhalten und über vergleichsweise grosse Distanzen übermittelt werden. Das zeigt ein Team des Departement Physik der Universität Basel und des Swiss Nanoscience Instituts in einer Veröffentlichung in Physical Review X.

Seit einigen Jahren wird weltweit untersucht, wie sich der Spin des Elektrons zur Speicherung und Übertragung von Information nutzen lässt. Der Spin jedes...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungen

Den Nachhaltigkeitskreis schließen: Lebensmittelschutz durch biobasierte Materialien

21.07.2017 | Veranstaltungen

Operatortheorie im Fokus

20.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Einblicke unter die Oberfläche des Mars

21.07.2017 | Geowissenschaften

Wegbereiter für Vitamin A in Reis

21.07.2017 | Biowissenschaften Chemie

Den Geheimnissen der Schwarzen Löcher auf der Spur

21.07.2017 | Veranstaltungsnachrichten