Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Angenehmes Raumklima durch poröse Gläser

30.07.2014

Die richtige Luftfeuchtigkeit und Temperatur beeinflussen das Wohnklima entscheidend. Künftig schaffen in Putze eingearbeitete poröse Gläser ein Wohlfühlklima in Räumen. Sie regulieren die Feuchtigkeit besonders gut und beugen Schimmel vor.

Kaum etwas beunruhigt Mieter und Eigentümer so sehr wie Schimmel an den Wänden. Die schwarzen Flecken sehen nicht nur hässlich aus, sondern gefährden die Gesundheit. Vor allem durch verschärfte Dämmstandards kann es zu hoher Feuchtigkeit in Wohnräumen kommen – der Hauptursache für Schimmel.


Rasterelektronenmikroskopaufnahme (REM) von Glasflakes.

© Fraunhofer ISC / F. Somorowsky

Denn mit der 2002 in Kraft getretenen Energieeinsparverordnung hat die Bundesregierung festgelegt, dass Außenbauteile von Neubauten und sanierten Altbauten luftdicht ausgeführt werden müssen, damit möglichst keine Wärme entweicht. Die Kehrseite der Medaille: Die Feuchtigkeit bleibt in den Zimmern gefangen. »Feuchteregulierende Baustoffe gewinnen daher immer mehr an Bedeutung«, sagt Ferdinand Somorowksy, Wissenschaftler am Fraunhofer-Institut für Silicatforschung ISC in Würzburg.

Besonders schnelle Wasseraufnahme

Der Forscher und sein Team entwickeln gemeinsam mit der Universität Bayreuth und der Firma Keimfarben GmbH Zusätze für Farben und Putze, die ausgleichend auf das Raumklima, vor allem auf die Raumfeuchte wirken. Als Additive verwenden die Projektpartner künstlich hergestellte poröse Gläser, deren Porengröße, -volumen und Partikelform sich gezielt beeinflussen lassen – ein Vorteil dieser anorganischen Materialien gegenüber natürlichen Werkstoffen.

Die Glaspartikel, die insbesondere in der Form von Flakes untersucht wurden, nehmen Wasser aus der Raumluft besonders schnell auf, speichern es und geben es langsam wieder ab. »Wasser ist als unsichtbarer Dampf ein Bestandteil der Luft. Damit das Raumklima angenehm ist und bleibt, muss das Wasser, das wir beim Duschen, Kochen und Schwitzen zusätzlich an die Raumluft abgeben, irgendwie auch wieder abgeführt werden.

Wände und Decken bieten große Flächen, die für das Feuchtemanagement genutzt werden können. Wenn wir die Glaspartikel in Gipse, Putze und Farben für Innenwände einbringen, können sie täglich und jahreszeitlich bedingte Feuchteschwankungen abpuffern. Die Wohnung ist dann einfach behaglicher. 95 bis 98 Prozent der bislang erhältlichen Putze haben keine Zusätze«, erläutert Somorowsky.

Die Glaspartikel basieren auf Vycor-Glas®. Bei diesem Glas können sich durch eine geeignete Herstellung Poren bilden, die man durch Anpassen der Prozessparameter gezielt einstellen kann. Im Gegensatz zu anderen Materialien mit Sorptionseigenschaften wie Zeolithe oder Keramiken lassen sich runde Partikel, Fasern und Flakes produzieren. Möglich sind Füllstoffe mit Porengrößen zwischen wenigen Nano- bis zu mehreren Mikrometern.

»Da sich die Porosität und die Größe der Poren exakt einstellen lässt, kann man die Feuchtigkeit effektiv regulieren. Indem wir die Porengröße minimal verändern, passen wir das Material für unterschiedliche Temperaturen und verschiedene Anwendungen wie Wohn-, Feucht – oder Kellerräume an«, sagt der Forscher. Die ungiftigen und nicht brennbaren porösen Gläser sind preisgünstig und konnten schon in Vorversuchen in großen Mengen von mehreren 100 Kilogramm hergestellt werden.

In Praxistests haben die Wissenschaftler nachgewiesen, dass Putze mit eingearbeiteten Glasflakes im Vergleich zu Zeolithen und Holzfaserplatten, die ebenfalls zur Feuchteregulierung verwendet werden, deutlich mehr Feuchtigkeit aufnehmen und diese auch wieder vollständig abgeben können. Die Tests wurden bei konstanter Temperatur und einer Luftfeuchtigkeit durchgeführt, die einem normalen Innenraumklima nachempfunden wurde.

Auch in weiteren Untersuchungen mit Referenzputzen erwies sich das anorganische Material als überlegen. Bei steigender Luftfeuchtigkeit war die Massenzunahme und damit die Wasseraufnahme bei dem mit Glasflakes versetzten Putz deutlich höher als bei den Vergleichsmaterialien. »In einem 30 m3-Raum stehen über Decke und Wände etwa  40 m2 Fläche für einen feuchteregulierenden Putz zur Verfügung. Um die Luftfeuchtigkeit von 72 auf 47 Prozent Luftfeuchte zu reduzieren, müssten rund 180 Milliliter Wasser aufgenommen werden können. Tatsächlich kann unser Putz mit Glasflakes mehr als einen halben Liter Wasser adsorbieren«, so Somorowsky. Auch ließen sich Schimmelpilz hemmende Substanzen in den Putz einbringen.

Ein weiterer positiver Effekt der porösen Glasflakes: Sie beeinflussen die Energiebilanz eines Gebäudes. Wird bei hoher Luftfeuchte Wasser an der Glasoberfläche angereichert, macht die dabei freiwerdende Energie die Raumluft trockener und wärmer. Bei geringer Luftfeuchte und Desorption wird die Raumluft abgekühlt und feuchter. Diese Vorgänge laufen sowohl im Winter als auch im Sommer ab, so dass man primäre Energie zum Heizen oder Kühlen einsparen kann. Vor allem beim Heizungsbetrieb verbessern gleichmäßig in der Putzschicht verteilte Glasflakes das Raumklima.

Derzeit prüfen die Projektpartner wie sich die glasbasierten Werkstoffe unter zusätzlichen Farbschichten und Tapeten verhalten. Sie gehen davon aus, dass es noch etwa zwei Jahre dauern wird, bis die umweltfreundlichen, feuchteregulierenden Putze in den Fachhandel kommen.

Ferdinand Somorowsky | Fraunhofer Forschung Kompakt
Weitere Informationen:
http://www.fraunhofer.de/de/presse/presseinformationen/2014/August/angenehmes-raumklima-durchporoese-glaeser.html

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fliegende Intensivstationen: Ultraschallgeräte in Rettungshubschraubern können Leben retten

Etwa 21 Millionen Menschen treffen jährlich in deutschen Notaufnahmen ein. Im Kampf zwischen Leben und Tod zählt für diese Patienten jede Minute. Wenn sie schon kurz nach dem Unfall zielgerichtet behandelt werden können, verbessern sich ihre Überlebenschancen erheblich. Damit Notfallmediziner in solchen Fällen schnell die richtige Diagnose stellen können, kommen in den Rettungshubschraubern der DRF Luftrettung und zunehmend auch in Notarzteinsatzfahrzeugen mobile Ultraschallgeräte zum Einsatz. Experten der Deutschen Gesellschaft für Ultraschall in der Medizin e.V. (DEGUM) schulen die Notärzte und Rettungsassistenten.

Mit mobilen Ultraschallgeräten können Notärzte beispielsweise innere Blutungen direkt am Unfallort identifizieren und sie bei Bedarf auch für Untersuchungen im...

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Impfstoffe zuverlässig inaktivieren mit Elektronenstrahlen

23.03.2017 | Biowissenschaften Chemie

Darmkrebs: Wenn die Wachstumsbremse fehlt

23.03.2017 | Biowissenschaften Chemie

Riesensalamander, Geckos und Olme – Verschwundene Artenvielfalt in Sibirien

23.03.2017 | Biowissenschaften Chemie