Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Abgetaucht zum Schweißen

22.02.2010
Was tun, wenn die Windkraftanlage vor der Küste einen Riss im Sockel hat? Unterwasserschweißer lernen ihr Handwerk am Unterwassertechnikum des Instituts für Werkstoffkunde

Wer zum Tauchen fährt, sucht sich in der Regel ein warmes, sonniges Plätzchen und eine sehenswerte Unterwasserwelt. Die Taucher, die ins Institut für Werkstoffkunde (IW) kommen, zahlen mindestens so viel wie ein Urlaubstaucher, bekommen dafür aber weder Sonne noch bunte Flora oder Fauna.

Stattdessen steigen sie jeweils zu dritt in voller Montur immer wieder in ein großes, etwa vier Meter tiefes Wasserbecken im Unterwassertechnikum, das zum Institut für Werkstoffkunde und damit zum Produktionstechnischen Zentrum der Leibniz Universität Hannover (PZH) gehört. Als Souvenir können sie nur selbstgeschweißte Kehlnähte mit nach Hause nehmen. Dafür gibt es aber zukunftsweisendes Know-how.

Es ist der erste Lehrgang seit drei Jahren, der - durchgeführt von der Schweißtechnischen Lehr- und Versuchsanstalt Hannover - zurzeit im Unterwassertechnikum (UWTH) stattfindet. "In den vergangenen Jahren mussten die Unternehmen wohl sparen", vermutet Thomas Hassel, promovierter Maschinenbauingenieur und Leiter des UWTH, "aber mittlerweile ist die Nachfrage nach Unterwasserschweißarbeiten so groß, dass sie ihre Taucher dringend entsprechend ausbilden lassen müssen." Für die Lehrgänge, die bis Ende März laufen, sind 19 Berufstaucher angemeldet, die zugleich Schweißer sein müssen. Sie kommen von Firmen aus ganz Deutschland, die europaweit gerufen werden, wenn ein Schiff die Hafenmauer gerammt und die Spundwand verletzt hat. Oder wenn, was in Zukunft häufiger passieren dürfte, in Offshore-Windparks unterhalb des Wasserspiegels Schäden entstanden sind. Da kann man die beschädigten Strukturen nicht nach oben holen, man muss an Ort und Stelle schweißen; Standardstähle ebenso wie spezielle, hochfeste Stähle. Direkt unter der Wasseroberfläche genauso wie in zehn oder zwanzig Metern Tiefe.

"Beim Schweißen unter Wasser müssen Sie sehr kontrollierte, regelmäßige Bewegungen mit der Elektrode ausführen", erläutert Hassel und zieht mit der rechten Hand kleine spiralförmige Kreise in die Luft, "damit Ihnen der Lichtbogen nicht ausgeht. Das ist nicht ganz einfach." Die Taucher lernen das durch das Verschweißen von etwa 1000 Elektroden während ihres Unterwasserschweißlehrgangs - übrigens außer einem Lehrgang der Bundesmarine dem einzigen in Deutschland - und profitieren dabei von den Räumlichkeiten, die das UWTH als Teil des Instituts für Werkstoffkunde bietet.

Aber auch das IW profitiert von den Tauchern. Denn zurzeit arbeiten die Wissenschaftler hier an Elektroden, die als Alternative zu herkömmlichen Unterwasserelektroden marktreif gemacht werden sollen. Das IW hat erstmals eine Elektrode entwickelt, die nicht das Ergebnis vieler empirischer Durchläufe ist, sondern auf wissenschaftlichen Analysen beruht: Die Wissenschaftlerinnen und Wissenschaftler stellen nicht nur fest, dass die Zugabe von zwei Prozent des Materials X die Elektrode besser gemacht hat, sie wissen auch, warum das so ist. Auf diese Weise erreichen sie eine Systematik bei der Entwicklung und Herstellung, die es bisher nicht gab. Sie können voraussagen, welche Unterwasserelektrode aufgrund welcher Zusammensetzung welche Eigenschaften haben wird. Die Schweißnähte, die die Unterwassertaucher mit verschiedenen Elektroden während der Lehrgänge ziehen, sind da willkommenes Forschungsmaterial.

Daneben beschäftigen sich Ingenieure des UWTH auch mit Elektroden, die in mehreren Tausend Metern Wassertiefe automatisiert einsetzbar sein sollen. "Das Unterwasserschweißen ist insgesamt ein großes Thema für uns", sagt Professor Friedrich-Wilhelm Bach, Leiter des IW und Dekan der Fakultät für Maschinenbau der Leibniz Universität Hannover. "Mit der Zunahme von Offshore-Windparks wird die Nachfrage weiter stark ansteigen. Unser Ziel ist, die verschiedenen Kompetenzen in diesem Bereich hier am UWTH zu bündeln." Rudolf Kolbusch, Lehrgangsleiter für die Schweißtechnische Lehr- und Versuchsanstalt (SLV), der die Taucher im Becken über Funk anleitet, begrüßt diese Ziele: "Über Wasser wird alles eingehend geprüft: Standsicherheit, Verkehrssicherheit, Dauerhaftigkeit. Für alles gibt es ein Qualitätssicherheitssystem. Unter Wasser wird häufig nur per Augenschein bewertet. Als ob Standsicherheit unterhalb der Wasserlinie aufhören würde. Das Gegenteil ist der Fall!" Bessere Verfahren und eindeutige Normen seien erforderlich. Ein Kompetenzzentrum mit der SLV Hannover und der Leibniz Universität Hannover in der Region Hannover wäre da ein großer Fortschritt.

Hinweis an die Redaktion:
Die Lehrgänge laufen bis zum 26. Februar 2010 und dann noch einmal vom 8. bis 27. März 2010. Für weitere Informationen steht Ihnen Dr.-Ing. Thomas Hassel vom Institut für Werkstoffkunde unter Telefon +49 511 762 9813 oder per E-Mail unter hassel@iw.uni-hannover.de gern zur Verfügung.

Dr. Stefanie Beier | idw
Weitere Informationen:
http://www.uni-hannover.de

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Europäisches Exzellenzzentrum für Glasforschung
17.03.2017 | Friedrich-Schiller-Universität Jena

nachricht Vollautomatisierte Herstellung von CAD/CAM-Blöcken für kostengünstigen, hochwertigen Zahnersatz
16.03.2017 | Fraunhofer-Institut für Silicatforschung ISC

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gigantische Magnetfelder im Universum

Astronomen aus Bonn und Tautenburg in Thüringen beobachteten mit dem 100-m-Radioteleskop Effelsberg Galaxienhaufen, das sind Ansammlungen von Sternsystemen, heißem Gas und geladenen Teilchen. An den Rändern dieser Galaxienhaufen fanden sie außergewöhnlich geordnete Magnetfelder, die sich über viele Millionen Lichtjahre erstrecken. Sie stellen die größten bekannten Magnetfelder im Universum dar.

Die Ergebnisse werden am 22. März in der Fachzeitschrift „Astronomy & Astrophysics“ veröffentlicht.

Galaxienhaufen sind die größten gravitativ gebundenen Strukturen im Universum, mit einer Ausdehnung von etwa zehn Millionen Lichtjahren. Im Vergleich dazu ist...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Auf der Spur des linearen Ubiquitins

Eine neue Methode ermöglicht es, den Geheimcode linearer Ubiquitin-Ketten zu entschlüsseln. Forscher der Goethe-Universität berichten darüber in der aktuellen Ausgabe von "nature methods", zusammen mit Partnern der Universität Tübingen, der Queen Mary University und des Francis Crick Institute in London.

Ubiquitin ist ein kleines Molekül, das im Körper an andere Proteine angehängt wird und so deren Funktion kontrollieren und verändern kann. Die Anheftung...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Physiker erzeugen gezielt Elektronenwirbel

Einem Team um den Oldenburger Experimentalphysiker Prof. Dr. Matthias Wollenhaupt ist es mithilfe ultrakurzer Laserpulse gelungen, gezielt Elektronenwirbel zu erzeugen und diese dreidimensional abzubilden. Damit haben sie einen komplexen physikalischen Vorgang steuern können: die sogenannte Photoionisation oder Ladungstrennung. Diese gilt als entscheidender Schritt bei der Umwandlung von Licht in elektrischen Strom, beispielsweise in Solarzellen. Die Ergebnisse ihrer experimentellen Arbeit haben die Grundlagenforscher kürzlich in der renommierten Fachzeitschrift „Physical Review Letters“ veröffentlicht.

Das Umwandeln von Licht in elektrischen Strom ist ein ultraschneller Vorgang, dessen Details erstmals Albert Einstein in seinen Studien zum photoelektrischen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungen

Über Raum, Zeit und Materie

22.03.2017 | Veranstaltungen

Unter der Haut

22.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die „Panama Papers“ aus Programmierersicht

22.03.2017 | Veranstaltungsnachrichten

Neues Schiff für die Fischerei- und Meeresforschung

22.03.2017 | Biowissenschaften Chemie

Mit voller Kraft auf Erregerjagd

22.03.2017 | Biowissenschaften Chemie