Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Die 'coolsten' Halbleiter-Nanodrähte

23.03.2011
Eine neue Methode ermöglicht die kostengünstige Herstellung von Silizium-Nanodrähten

Halbleiter-Nanodrähte sind Schlüsselmaterialien für die Entwicklung von preiswerteren und effizienteren Solarzellen sowie für Batterien mit erhöhter Speicherkapazität. Darüber hinaus sind sie wichtige Bausteine für die Nanoelektronik. Halbleiter-Nanodrähte im industriellen Maßstab herzustellen, ist jedoch sehr teuer. Dafür verantwortlich sind vor allem die hohen Temperaturen, unter denen sie erzeugt werden (600-900°Celsius), sowie die erforderliche Verwendung von teuren Katalysatoren wie Gold. Wissenschaftler am Max-Planck-Institut für Intelligente Systeme in Stuttgart, vormals Max-Planck-Institut für Metallforschung, haben nun kristalline Halbleiter-Nanodrähte auch bei vergleichsweise niedrigen Temperaturen von 150°Celsius hergestellt und dabei preiswerte Katalysatoren wie Aluminium eingesetzt. Sie können so auch nanostrukturierte Halbleiter direkt auf hitzeempfindlichen Kunststoffoberflächen abscheiden.


Transmissionselektronen-mikroskopische Aufnahme eines Querschnitts durch eine Aluminium-Silizium-Doppelschicht während des Aufheizens. Das Bild zeigt, wie das Silizium bereits bei einer Temperatur von 120°Celsius in die Zwischenräume zwischen den benachbarten Aluminium-Kristallen fließt (rot: Silizium, blau: Aluminium). © Max-Planck-Institut für Intelligente Systeme (vormals Max-Planck-Institut für Metallforschung)


Links: Transmissionselektronen-mikroskopische Aufnahme (Aufsicht) die zeigt, wie sich bei 170°Celsius entlang der Grenzen zwischen benachbarten Aluminiumkristallen eine kristalline Silizium-Nanodraht-Struktur ausbildet. (rot: Silizium, blaugrün: Aluminium). Rechts: Rasterelektronen-mikroskopische Aufnahme (unter einem Winkel von 30 Grad), die das Muster von Silizium-Nanodrähten zeigt, nachdem das Aluminium durch chemisches Ätzen entfernt wurde. © Max-Planck-Institut für Intelligente Systeme (vormals Max-Planck-Institut für Metallforschung)

Nanodrähte aus Halbleitern wie Silizium oder Germanium werden in Zukunft aus vielen technischen Anwendungen nicht mehr wegzudenken sein. Grundlage für ihre Herstellung ist bis heute ein Prozess, der erstmals im Jahr 1964 beschrieben wurde. Beim so genannten Vapor-Liquid-Solid-Mechanismus (VLS) dienen Partikel eines Metall-Katalysators als Wachstumskeime für die Drähte. Dazu werden die Metallpartikel auf ein festes Substrat aufgebracht, geschmolzen und einer Silizium- oder Germanium-haltigen Gasatmosphäre ausgesetzt. Daraufhin nehmen die Metalltropfen so lange Atome des Halbleiters aus dem Gas auf, bis sie übersättigt sind und der überschüssige Halbleiter an der Grenze zum Substrat auskristallisiert – ein Nanodraht wächst. Als Katalysator in diesem Prozess dient meistens Gold, weil es als Schmelze viel Silizium oder Germanium aufnehmen kann. Die Verwendung des teuren Katalysators sowie die hohe Prozesstemperatur von 600 bis 900 ºC, schlagen sich jedoch auf die Herstellungskosten nieder.

Materialforscher aus der Abteilung von Eric Mittemeijer am Max-Planck-Institut für Intelligente Systeme haben nun ein Verfahren entdeckt, mit dem sich Halbleiter-Nanodrähte bei viel niedrigeren Temperaturen von nur 150° Celsius herstellen lassen. Außerdem erlaubt es, billige Katalysatoren wie Aluminium zu verwenden. Gemeinsam mit Kollegen vom Stuttgarter Zentrum für Elektronenmikroskopie, einer Forschungseinrichtung am selben Institut, ist es ihnen gelungen, das Nanodraht-Wachstum im atomaren Maßstab in Echtzeit zu beobachten.

Die Wissenschaftler stellten hierzu eine Doppelschicht aus kristallinem Aluminium und amorphem Silizium her. Die Schicht wurde im Vakuum und bei Raumtemperatur mittels thermischer Verdampfung erzeugt. Während die Atome in der amorphen Siliziumphase ungeordnet vorliegen, sind sie in der Aluminiumschicht in einem regelmäßigen Kristallgitter angeordnet. Hier formen sie Milliarden von winzigen Aluminiumkristallen, jeder davon nur rund 50 Nanometer groß. Die Kristallkörner sind eng benachbart und formen mit ihren Grenzen ein zweidimensionales Korngrenzen-Netzwerk innerhalb der Aluminiumschicht.

Wie die Forscher mittels analytischer Transmissionselektronenmikroskopie direkt verfolgen konnten, beginnen die Siliziumatome bereits bei einer Temperatur von 120°C aus der Siliziumschicht in dem Aluminiumkatalysator zu fließen. Bei solch niedrigen Temperaturen ist der Aluminiumkatalysator im festen Zustand und kann zudem keine Siliziumatome in sich aufnehmen. Die mikroskopischen Untersuchungen zeigen, dass die Siliziumatome sich stattdessen an den Grenzen zwischen den Aluminiumkristallen orientieren. Sobald sich mehr und mehr Siliziumatome an den Aluminiumkorngrenzen ansammeln, ordnen sie sich allmählich in winzige kristalline Nanodrähte um, weil dies zu einer Verringerung der Gesamtenergie des Systems führt. So entsteht ein Netz von kristallinen Nanodrähten, deren Muster durch das Aluminiumkorngrenzen-Netzwerk vorgegeben ist. Auf diese Weise lassen sich Drähte von nur 15 Nanometern Dicke herstellen.

Der von den Stuttgarter Materialwissenschaftlern aufgedeckte Mechanismus für das Wachstum von Nanodrähten unterscheidet sich offensichtlich grundlegend von dem konventionellen VLS-Wachstumsmechanismus. Die neue Wachstumsmethode erfordert nämlich keine Löslichkeit des Halbleiters in dem Metallkatylsator und kann daher bei vergleichsweise niedrigen Temperaturen von 150°Celsius unter Verwendung von preiswerten Katalysatoren wie Aluminium eingesetzt werden.

Die größten Vorteile der neuen Methode sind folglich, dass sie ohne hohe Substrattemperaturen, sowie ohne teure Katalysatoren auskommt. Zudem können Materialforscher die Größe der Aluminiumkörner und damit die Form des Aluminiumkorngrenzen-Netzwerks je nach Bedarf variieren und so das gewünschte Muster von Silizium-Nanodrähten herstellen. Der Aluminiumkatalysator lässt sich sehr leicht durch selektives Ätzen entfernen. Da Aluminiumfilme bereits seit Jahrzehnten in der Mikroelektronik eingesetzt werden, ist ihre Herstellung und Bearbeitung vielfach erprobt. Möglicherweise eignen sich aber auch andere Katalysatoren für das Verfahren. Ein weiterer Vorteil: Mit der Technik lassen sich nanostrukturierte Silizium-Bauteile auf die meisten Kunststoffe direkt aufbringen, selbst wenn diese hitzeempfindlich sind.

Ansprechpartner
Prof. Dr. Eric J. Mittemeijer
Max Planck Institute for Intelligent Systems, Stuttgart
Telefon: +49 71 1689-3311
Fax: +49 71 1689-3312
E-Mail: e.j.mittemeijer@mf.mpg.de
Originalpublikation
Zumin Wang, Lin Gu, Fritz Phillipp, Jiang Y. Wang, Lars P.H. Jeurgens, and Eric J. Mittemeijer
Metal-catalyzed growth of semiconductor nanostructures without solubility and diffusivity constraints

Advanced Materials 23 (2011) 854-859, DOI: 10.1002/adma.201002997

Prof. Dr. Eric J. Mittemeijer | Max-Planck-Institut
Weitere Informationen:
http://www.mpg.de/1251257/coolste_halbleiter_nanodraehte?page=2

Weitere Nachrichten aus der Kategorie Materialwissenschaften:

nachricht Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter
23.06.2017 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

nachricht Materialwissenschaft: Widerstand wächst auch im Vakuum
22.06.2017 | Friedrich-Schiller-Universität Jena

Alle Nachrichten aus der Kategorie: Materialwissenschaften >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften