Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Zweigeteilte Getriebegehäuse mit Portal-Fräsmaschinen wirtschaftlich bearbeiten

16.09.2009
Die separate, hochgenaue mechanische Bearbeitung geteilter Bauteile mit Passungen über die Teilungsgrenzen hinweg ermöglichen Hochpräzisions-Portal-Fräsmaschinen. So können geteilte Großgetriebegehäuse separat genau und mit hoher Güte der Koaxialität der Lagerbohrungen wirtschaftlicher bearbeitet werden.

Die hohen Anforderungen an Form- und Lageabweichungen für die funktionsfähige Komplettbaugruppe verlangen größte Sorgfalt bei der mechanischen Gehäusefertigung für Großgetriebe, bestehend aus Gehäuseteil und Deckel.

Achsflucht und Bohrungsqualität der Wellenlagerpaare beeinflussen Schwingungen und Verschleiß

Gefordert sind sehr hohe Koaxialität der Lagerbohrungen bei enger Bohrungstoleranz. Dabei haben die Güte von Koaxialität (Achsflucht) und Bohrungsqualität der drei Wellenlagerpaare entscheidenden Einfluss auf auftretende Schwingungen, Geräusche sowie Verschleiß der montierten Getriebe. Diese anspruchsvollen Funktionsvorgaben der Getriebe erfordern eigentlich die Fertigung im geschlossenen Verbund des Getriebegehäuses. Jedoch die Größe der jeweils zu fertigenden drei Lagerbohrungen in Deckel und Gehäuseteil sowie der Abstand zwischen diesen Teilen von etwa 1000 mm lassen eine derartige Bearbeitung nicht zu. Deshalb erfolgt die Fertigung des Großgetriebes auf einer Präzisions- Portalmaschine Mikromat 20 V.

Begonnen wird mit der Vorbearbeitung des Gehäuses von zwei Seiten mit 0,5 mm Aufmaß auf den genauigkeitsrelevanten Konturelementen, beispielsweise den Lagersitzen. Im Gehäuseteil werden Fräs- und Bohrbearbeitungen an der Bodenpartie durchgeführt. Nach Fertigstellung der ersten Seite des Getriebegehäuses erfolgt das Ermitteln der Lage der Formelemente durch Messtaster. Dies geschieht vor der Bearbeitung der zweiten Seite auf der Maschine und hat den weiteren Vorteil, dass das aufwändige Ausrichten des Bauteiles entfällt.

Messtaster ermittel die Lage des Gehäusedeckels

Analog vorgegangen wird bei der Vorbearbeitung des Deckels von zwei Seiten. Auch dort werden die Lagersitze mit 0,5 mm Aufmaß bearbeitet und vor der zweiten Seite erfolgt wiederum die Ermittlung der Lagen mittels Messtaster auf der Maschine. Eingespart werden die aufwändigen Ausrichtarbeiten durch Übernahme der Messdaten.

Flanschflächen werden feinstgefräst

Nach der thermisch bedingten zeitlichen Unterbrechung (zwischen Vor- und Fertigbearbeitung) sowie Lösung der Werkstückfixierung zur Realisierung höchster Genauigkeitsanforderungen erfolgt die Finishbearbeitung. Begonnen wird mit der Fertigbearbeitung der Gehäuseunterseite (Außenseite) mittels vertikaler Hauptspindel und durch den Einsatz des automatisch wechselbaren Winkelbohrkopfes für horizontal und schräg angeordnete Konturelemente wie Bohrungen, Gewinde und Flächen. Danach erfolgt das Spindeln der einzigen durchgehenden Lagersitzbohrung von außen.

Die Flanschflächen werden feinstgefräst und Dichtungsbohrungen mit Qualitätsanforderung H 6 erzeugt. In dieser Aufspannung werden ebenfalls außen liegende Durchgangsbohrungen durch Ausspindeln hergestellt. Diese fungieren als Ausrichtbohrungen für die Bearbeitung der zweiten Seite (Innenseite des Getriebegehäuses). Abschließend erfolgt die Kontrollmessung mit dem Messtaster. Danach wird das Werkstück gedreht und für die Bearbeitung der Innenseite (Oberseite des Gehäuses) vorbereitet.

Ausspindeln der drei Lagersitze mit einer Spindelverlängerung

Zunächst erfolgt die Nullpunktermittlung mittels Messtaster und Übertragung aus dem Durchgangslagersitz und Ausrichtbohrungen. Das in das Koordinatensystem des Gehäuses implantierte Maschinensystem bildet die Voraussetzung zur Fertigbearbeitung der Innenkontur. Mit der „Spindelverlängerung 600 mm“ erfolgt die Feinstbearbeitung durch Ausspindeln der drei Lagersitze in der Toleranz H 5.

Mit einem Winkelbohr- und -fräskopf geschieht die Herstellung der horizontal und schrägliegenden Konturelemente wie Flächen, Bohrungen und Gewinde. In gleicher Zuordnung findet das Ausspindeln der Stiftlochbohrungen zur späteren Genaufixierung des Deckels statt. Abschließend erfolgt die obligatorische Kontrollmessung mit dem Messtaster.

Auf der Anschraubfläche wird der vorgefertigte Deckel über die Stiftlöcher per Messtaster justiert, danach fixiert und verschraubt. Mit der Hauptspindel erfolgt vorgabegerecht die Finishbearbeitung der drei Lagersitze durch Ausspindeln in der Qualität H 6. Die Kontrollmessung mit Messtaster bildet den Abschluss der Operation. Ein Komplettvermessen und Dokumentieren der Daten des Getriebegehäuses schließt die Fertigung und Zertifizierung ab.

Aufgrund der volumetrischen Genauigkeit, also der hochpräzisen Ausführung der Geometrie der Mikromat-Portalfräsmaschinen, und des Einsatzes von Zusatzkomponenten wie Winkelbohr- und -fräskopf sowie Spindelverlängerung werden Koaxialitäten der Lagerbohrungen über einen Lagerabstand von etwa 1000 mm mit einer Genauigkeit von
Trotz nicht realisierbarer Komplettbearbeitung von Gehäuse und Deckel und ohne zusätzliche, kostenintensive Aufnahmevorrichtungen ermöglichen die Portalfräsmaschinen in Verbindung mit einem Messtaster die qualitätsgerechte Fertigung.

Dipl.-Ing. Thomas Warnatsch ist geschäftsführender Gesellschafter der Mikromat GmbH in 01239 Dresden.

Thomas Warnatsch | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/229815/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Höher - schneller - weiter: Der Faktor Mensch in der Luftfahrt

20.09.2017 | Veranstaltungen

Wälder unter Druck: Internationale Tagung zur Rolle von Wäldern in der Landschaft an der Uni Halle

20.09.2017 | Veranstaltungen

7000 Teilnehmer erwartet: 69. Urologen-Kongress startet heute in Dresden

20.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Drohnen sehen auch im Dunkeln

20.09.2017 | Informationstechnologie

Pfeilgiftfrösche machen auf „Kommando“ Brutpflege für fremde Kaulquappen

20.09.2017 | Biowissenschaften Chemie

Frühwarnsystem für gefährliche Gase: TUHH-Forscher erreichen Meilenstein

20.09.2017 | Energie und Elektrotechnik