Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

UV-Laser ermöglichen leistungsfähigere Oberflächen

27.04.2011
Mottenaugen und Lotuseffekte sind klassische Beispiele, wenn man sich mit der Funktionalisierung von Oberflächen beschäftigt. Hierbei werden kleinste Strukturen auf der Oberfläche von Bauteilen erzeugt, um erweiterte Bauteileigenschaften zu erreichen.

Die Nachbildung der Mikrostrukturen, wie sie z.B. auf dem Mottenauge zu finden sind, ermöglicht unter anderem die Entspiegelung moderner Optiken. Die Übertragung des Lotuseffekts ermöglicht die Herstellung schmutzabweisender Oberflächen. UV Laser und Kurzpulslaser erzeugen kurze und sehr energiereiche Lichtimpulse im Wellenlängenbereich von 193nm bis 355nm.

Durch die hohe Photonen- und Impulsenergie lassen sich diese Laser sehr effizient zum Modifizieren von Oberflächen sowie zum Deponieren oder Abtragen dünner Schichten einsetzen. Ein Beispiel für die Modifikation von Oberflächen ist das Umkristallisieren oder Annealing von Siliziumschichten für die Herstellung von LCD’s und OLED-Displays bei 308nm. »Die einige 10 nm dicken amorphen Siliziumschichten werden mit einem Excimerlaser aufgeschmolzen und kristallisieren danach wieder. Bei richtiger Wahl der Parameter erhält man polykristallines Silizium mit sehr viel höherer Elektronenmobilität. Eine Technologie zum Aufbringen funktionaler Schichten ist die gepulste Laserabscheidung (Pulsed Laser Deposition), kurz PLD. Durch den Einsatz von Excimerlasern mit der hohen Photonenenergie der UV-Strahlung bei 248nm oder 308nm können Materialien aus dem Verbund eines Targets gezielt verdampft werden. Damit können auch mehrkomponentige Ausgangsmaterialien unter Beibehaltung der stöchiometrischen Verteilung kontrolliert auf dem Substrat aufgebracht werden.

Um den Austausch zwischen den Industrieanwendern und Forschern zu verbessern, fand am 30. März ein offener Workshop zu aktuellen Aspekten der Charakterisierung, Strukturierung bzw. Modifikation von Oberflächen statt. Nach der Vorstellung des PhotonicNet erläuterte Dr.-Ing. Thomas Fahlbusch die grundsätzliche Idee hinter den regionalen Kompetenznetzen Optische Technologie sowie deren deutschlandweiten Zusammenschluss im OptecNet Deutschland e.V.. Nachfolgend stellte Dr. Ihlemann vom Laser Laboratorium Göttingen e.V. das Thema „Periodische Oberflächenstrukturen auf Metallen und Halbleitern durch UV-Femtosekunden- und Pikosekunden-Laserbearbeitung“ vor.

Aktuelle Markt- und und Produktentwicklungen aus dem Bereich der Excimerlaser für die Oberflächenbearbeitung wurden von Herrn Pätzel erläutert. Insbesondere für die flächige Umkristallisierung von Silizium für AMLCD und OLED Displays wird die Erhöhung der Leistung von Lasersystemen und damit eine Reduktion der Taktzeit in der industriellen Fertigung dar verfolgt. Herr Pätzel stellte in diesem Zusammenhang die Technologie hinter dem neuen VYPER Laser aus dem Hause Coherent vor.

Der Preisträger des letzten Berthold Leibinger Innovationspreises, Dr. Usoskin von der Bruker HTS GmbH aus Alzenau, erläuterte in seinem Vortrag „Pulsed Laser Deposition for Coated Conductors“ die Massenproduktion von Hochtemperatur-Supraleitern der zweiten Generation für energietechnische Anwendungen. Auch hier kann durch neue Entwicklungen im Bereich der Lasertechnologie eine Aufskalierung des industriellen Fertigungsprozesses erreicht werden. Die verwendete Technologie ist unter dem Titel „Pulsed Laser Deposition“ (PLD) bekannt.

Mit der PLD-Technologie können ebenfalls besonders harte und verschleißfreie Schichten produziert werden, wie sie zur Verbesserung der Standfestigkeit von spanend arbeitenden Werkzeugen benötigt werden. Hier stellte Herr Böttcher von der Hochschule Mittweida die Forschungsergebnisse der Arbeitsgruppe um Prof. Weißmantel vor. Die Kombination der PLD-Technologie mit einer zusätzlichen UV-Lasermikrostrukturierung der erzeugten Oberfläche führt hier zu deutlich geringerem Verschleiß des Werkzeugs.

Aus der Beleuchtungstechnik für LCD-Fernseher und Automobile sind LEDs nicht mehr wegzudenken. Die aktuellen Anforderungen sind zum einen energieeffizientere LEDs zum anderen eine weitere Reduktion der Herstellungskosten. Dr. Kunzer vom Fraunhofer-Institut für Angewandte Festkörperphysik aus Freiburg veranschaulichte in seinem Vortrag „Laser Processing of III-Nitride Light Emitting Diodes“ einen Ansatz für ein behutsames Ablösen der LED vom Saphirwafer durch die Laser-Lift Off Methode (LLO) mit dem Excimerlaser bei 248nm.

Das genaue Verständnis des Laserkristallisationsprozesses bei der Herstellung von Silizium-Germanium-Solarzellen und die Rolle des Wasserstoffs dabei wurde von Prof. Nickel vom Helmholtz Zentrum Berlin erläutert.

Veranstalter war das niedersächsische Kompetenznetz für Optische Technologien PhotonicNet in Kooperation mit dem Laserhersteller Coherent. Seit 2004 kommen Experten aus Industrie und Wissenschaft regelmäßig in diesem Forum zusammen, um sich über neueste Trends und Entwicklungen im Bereich der Oberflächenbearbeitung auszutauschen. Die Treffen dienen als Diskussionsplattform und haben es sich zur Aufgabe gemacht, wichtige Impulse für Innovationsprozesse und F&E - Kooperationen im Bereich der Oberflächenbearbeitung zu geben.

Pressekontakt:
PhotonicNet GmbH
Kompetenznetz Optische Technologien
Dr.-Ing. Thomas Fahlbusch
Garbsener Landstrasse 10
D-30419 Hannover
phone: ++49-(0)511-277-1640
fax: ++49-(0)511-277-1650
fahlbusch@photonicnet.de

Thomas Fahlbusch | idw
Weitere Informationen:
http://www.photonicnet.de

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics