Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up

01.02.2018

Klimatische Bedingungen haben einen großen Einfluss darauf, wie präzise Werkzeugmaschinen arbeiten. Umgebungseinflüsse wie Temperaturänderungen, Zugluft oder Luftfeuchtigkeit können deren Präzision stark beeinträchtigen. Das Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik IWU lässt Maschinen in verschiedene Klimazonen der Erde reisen, ohne sie tatsächlich nach Südostasien, Kanada oder Brasilien zu verfrachten: In einer neu eröffneten Klimazelle kann man testen, wie klimatische Effekte auf die Funktionsweise von Drehmaschine und Co. einwirken.

Werkzeugmaschinen sind thermisch empfindlich: Ihre Produktionsgenauigkeit kann bereits gestört werden, wenn Hallentore im Winter nur kurz offen stehen. Die meisten Unternehmen fertigen weltweit, oftmals in nicht klimatisierten Umgebungen. Die Folge sind ungenau arbeitende Maschinen, die Ausschuss produzieren.


Dank der abnehmbaren Deckenkonstruktion lassen sich kompletten Werkzeugmaschinen per Kran in die Klimazellen heben.

© Fraunhofer IWU

Auch laufende Antriebe und andere Wärmequellen wie etwa heiße Werkzeuge können sich negativ auswirken. Welchen Einfluss klimatische Effekte und Umgebungswechselwirkungen auf Werkzeugmaschinen und deren Komponenten haben, untersuchen Forscher des Fraunhofer IWU in Chemnitz in einer weltweit einzigartigen Klimazelle, die kürzlich eröffnet wurde.

»Durch Sonneneinstrahlung und Zugluft treten thermische Wechselwirkungen in Form von Strukturdehnungen auf, die wir in der Klimazelle abbilden können. Ziel ist es, die Fertigungsgenauigkeit der Maschinen zu stabilisieren und zu erhöhen, indem wir die thermisch bedingten Fehler während der Bearbeitung direkt in der Maschinensteuerung korrigieren«, erläutert Dr. Janine Glänzel, Wissenschaftlerin am Fraunhofer IWU.

Von thermischen Einflüssen besonders betroffen sind beispielsweise Maschinen mit einem langen Bett oder auch vertikal gebaute Systeme, die sich während der Produktion ungleichmäßig erwärmen und zur Seite biegen.

Die Wissenschaftlerin und ihr Team simulieren verschiedenste Temperaturszenarien: In dem neu eröffneten Prüflabor lassen sich Temperaturen von 10 bis 40 Grad Celsius mit einem Toleranzbereich von plus/minus 0,1 Kelvin und eine Luftfeuchte von 10 bis 90 Prozent mit einer Toleranz von drei Prozent einstellen.

»Wir haben die bereits bestehende Thermozelle zur Klimazelle umgerüstet. Durch neue Lüftungskomponenten, Dampfbefeuchter und Absorptionstrockner können wir jetzt neben der Temperatur zusätzlich die Luftfeuchte regeln«, sagt Glänzel. Die Forscherin und ihre Kollegen sind beispielsweise in der Lage, den Einfluss der Luftfeuchtigkeit auf das Quellverhalten moderner Materialien wie Mineralbeton zu untersuchen.

Abnehmbare Deckenkonstruktion

Dank einer Aufstellfläche von 40 Quadratmetern, einer lichten Höhe von 4,5 Metern und einer abnehmbaren Deckenkonstruktion lassen sich nicht nur einzelne Komponenten, sondern komplette Werkzeugmaschinen mit dem Hallenkran heben und in der Klimazelle platzieren. Die temperierbare Bodenplatte ist auf ein Gewicht von maximal 20 Tonnen ausgelegt.

Thermische Schwachstellenanalyse

Bevor der Messaufbau startet, ermitteln die Forscher mit Hilfe einer simulationsgestützten Analyse die optimale Platzierung der Temperatur- und Verlagerungssensoren. Erstere verkleben die Wissenschaftler direkt an der Maschine, die Verlagerungssensoren werden an einem um die Werkzeugmaschine aufgebauten Messgestänge montiert und durch kleine Stangen mit an neuralgischen Stellen angebrachten Messklötzern verbunden – also dort, wo die Forscher die einflussreichsten thermischen Verlagerungen messen können. Mit den Temperatursensoren können sie den Einfluss innerer als auch äußerer Wärmelasten auf die Maschinenstruktur erfassen.

Während des Experiments werden Temperaturschwankungen automatisiert abgebildet. Auch das Verhalten der Werkzeugmaschinen unter Langzeitbelastungen lässt sich erfassen. »Unsere ausgeklügelte Technik, mit der gekühlt und erwärmt wird, funktioniert im Prinzip wie die Klimaanlage im Auto«, so Glänzel. Hersteller, aber auch Anwender, haben so die Möglichkeit, ihre Fräs- und Zerspanungsmaschinen bereits im Vorfeld entsprechend zu konfigurieren und an künftige klimatische Gegebenheiten anzupassen.

Treten tatsächlich Verlagerungen auf, wenden die Forscher selbstentwickelte Korrekturalgorithmen an, um die Produktionsgenauigkeit zu beeinflussen. Die Messwerte fließen in die Korrekturmethode ein. »Wir berechnen die Korrekturwerte direkt über einen Referenzpunkt am Werkzeug, den sogenannten Tool Center Point, sodass thermisch bedingte Verformungen während der Fertigung von der Steuerung korrigiert werden können«, führt die technikaffine Mathematikerin aus. Darüber hinaus bestimmen die Forscher die Abwärmemenge der Werkzeugmaschinen, um sie wieder dem Kühlprozess zuzuführen und so Energie zu sparen.

Die Klimazelle ist Forschungsgegenstand des Sonderforschungsbereichs Transregio 96 »Thermo-energetische Gestaltung von Werkzeugmaschinen«, dessen Ziel es ist, die Parameter Energieeinsatz, Genauigkeit und Produktivität aufeinander abzustimmen und eine optimale Lösung zu etablieren. Die Deutsche Forschungsgemeinschaft DFG fördert das Forschungsvorhaben.

Weitere Informationen:

https://www.fraunhofer.de/de/presse/presseinformationen/2018/Februar/werkzeugmas...

Martin Lamß | Fraunhofer Forschung Kompakt

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht CI-Maschine von EMAG ECM: Hocheffektive Lösung für das Entgraten von komplexen Bauteilen
12.04.2018 | EMAG GmbH & Co. KG

nachricht Kaltmassivumformung: auch komplexe Bauteilherstellung virtuell und kostengünstig designen
29.03.2018 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Gammastrahlungsblitze aus Plasmafäden

Neuartige hocheffiziente und brillante Quelle für Gammastrahlung: Anhand von Modellrechnungen haben Physiker des Heidelberger MPI für Kernphysik eine neue Methode für eine effiziente und brillante Gammastrahlungsquelle vorgeschlagen. Ein gigantischer Gammastrahlungsblitz wird hier durch die Wechselwirkung eines dichten ultra-relativistischen Elektronenstrahls mit einem dünnen leitenden Festkörper erzeugt. Die reichliche Produktion energetischer Gammastrahlen beruht auf der Aufspaltung des Elektronenstrahls in einzelne Filamente, während dieser den Festkörper durchquert. Die erreichbare Energie und Intensität der Gammastrahlung eröffnet neue und fundamentale Experimente in der Kernphysik.

Die typische Wellenlänge des Lichtes, die mit einem Objekt des Mikrokosmos wechselwirkt, ist umso kürzer, je kleiner dieses Objekt ist. Für Atome reicht dies...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Wie schwingt ein Molekül, wenn es berührt wird?

Physiker aus Regensburg, Kanazawa und Kalmar untersuchen Einfluss eines äußeren Kraftfeldes

Physiker der Universität Regensburg (Deutschland), der Kanazawa University (Japan) und der Linnaeus University in Kalmar (Schweden) haben den Einfluss eines...

Im Focus: Basler Forschern gelingt die Züchtung von Knorpel aus Stammzellen

Aus Stammzellen aus dem Knochenmark von Erwachsenen lassen sich stabile Gelenkknorpel herstellen. Diese Zellen können so gesteuert werden, dass sie molekulare Prozesse der embryonalen Entwicklung des Knorpelgewebes durchlaufen, wie Forschende des Departements Biomedizin von Universität und Universitätsspital Basel im Fachmagazin PNAS berichten.

Bestimmte mesenchymale Stamm-/Stromazellen aus dem Knochenmark von Erwachsenen gelten als äusserst viel versprechend für die Regeneration von Skelettgewebe....

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Juni 2018

17.04.2018 | Veranstaltungen

Stralsunder IT-Sicherheitskonferenz im Mai zum 7. Mal an der Hochschule Stralsund

12.04.2018 | Veranstaltungen

Materialien erlebbar machen - MatX 2018 - Internationale Konferenz für Materialinnovationen

12.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Laser erzeugt Magnet – und radiert ihn wieder aus

18.04.2018 | Physik Astronomie

Neue Technik macht Mikro-3D-Drucker präziser

18.04.2018 | Physik Astronomie

Intelligente Bauteile für das Stromnetz der Zukunft

18.04.2018 | Energie und Elektrotechnik

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics