Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Universelles Ablagesystem bringt Pressen und Stanzen auf Highspeed

18.09.2009
Mit modularen Systemen lassen sich in der Fertigung viele Prozessschritte besonders wirtschaftlich automatisieren. Der Lauffener Spann- und Greiftechnikspezialist Schunk geht dabei noch einen Schritt weiter: Zusätzlich zu einem umfassenden Programm aus Greif-, Dreh- und Linearmodulen bietet das Unternehmen auch fundiertes Engineering-Know-how.

Bereits ab der Entwurfsphase können damit Baugruppen und Automatisierungssysteme virtuell simuliert und verbessert werden. Auf diese Weise verkürzen Anwender, Systemintegratoren und Konstruktionsbüros die Entwicklungszeit, vermeiden Schwachstellen und teure Fehlversuche und steigern sowohl die Lebensdauer als auch die Energieeffizienz der Anlage, wie das Beispiel der Kiwi Automations GmbH & Co. KG in Oberkirch zeigt.

Qualitätsanforderungen steigen stetig

Die Qualitätsanforderungen in der Serien- und Massenfertigung sind in den letzten Jahren permanent gestiegen. Immer anspruchsvoller, komplexer und empfindlicher werden die Teile. Zugleich gehören eine makellose Optik und eine hohe Maßhaltigkeit immer häufiger zu den entscheidenden Qualitätskriterien.

Speziell in diesem Bereich gewinnt daher das schonende und geordnete Ablegen zunehmend an Bedeutung. Diesen Trend hat Kiwi Automation frühzeitig erkannt.

In Kooperation mit Schunk entwickelte das Unternehmen ein kompaktes, vielseitig einsetzbares Ablagesystem, das beispielsweise Press- und Stanzteile selbst bei hohen Taktraten zuverlässig und schonend für die direkte Weiterverarbeitung positioniert und abstapelt. Verglichen mit Setzhilfen senkt die Automatisierungslösung von Kiwi Automation deutlich die Fertigungskosten. Zudem ist kontinuierlich eine schnelle Taktung möglich.

Entwicklungszeit deutlich verkürzt

Während früher bei der Entwicklung derartiger Automatisierungssysteme primär manuelle Auslegungen, Excel-Tools und teure Prototypen genutzt wurden, nimmt Schunk heute wesentliche Entwicklungsschritte bereits im virtuellen Raum vorweg. Die Auslegung von Schrauben, die Betriebsfestigkeit, die Belastungen auf Komponenten sowie Grenzlasten werden mit Hilfe modernster Software am virtuellen Prototypen simuliert und optimiert.

Die Simulationen liefern dabei wertvolle Ergebnisse: Sehr anschaulich erkennt man bereits frühzeitig Verformungen, Belastungen und Systemverhalten, kann Varianten vergleichen und Optimierungen durchführen. Das erhöht die Entwicklungssicherheit und erleichtert die Beurteilung der Konstruktion.

Vor allem aber spart die virtuelle Produktentwicklung Zeit und Kosten, weil entscheidende Schwachstellen bereits erkannt und korrigiert werden, noch bevor der erste Prototyp gebaut wird. Im Fall des Kiwi-Ablagesystems lässt sich dieser Vorteil ganz konkret fassen: Denn wegen der Simulation konnten zwei Entwicklungsstufen mit noch nicht voll ausgereiften Prototypen komplett eingespart werden.

Internes Expertennetzwerk koordiniert Simulation

Schunk Engineering ist ein internes Expertennetzwerk, in dem moderne, computergestützte Entwicklungstechnologien (CAE) projektübergreifend koordiniert, effektive Rechenwege genutzt, Erkenntnisse aufbereitet und anschließend wiederverwendbar gemacht werden. Das Unternehmen verfügt damit über einen hochwirksamen Simulations-Katalog für unterschiedlichste Teilaufgaben, die entsprechend den Kundenanforderungen kombiniert werden können.

So lassen sich beispielsweise Standardberechnungen für die Linear- und Portaltechnik durchführen. Aus dem umfassenden Programm von Schunk-Linearachsen wird auf diesem Weg die für die Anwendung optimale Achs-Kombination ermittelt.

Simulation erkennt schnell die Schwachstellen

Mit Hilfe der Simulation ist es möglich, hinreichend steife und haltbare Systeme zu konfigurieren sowie etwaige Schwachstellen zu erkennen und zu vermeiden. So können bereits vor dem Bau der ersten realen Prototypen mit minimalem Aufwand unterschiedlichste Varianten geprüft und optimiert werden. Dabei arbeitet das Unternehmen mit bis zu drei Simulationsstufen:

-Modalanalyse, das heißt Simulation der Schwingungsformen und Eigenfrequenzen zur ersten Beurteilung der Steifigkeit,

-statische beziehungsweise quasistatische Analyse, das heißt Simulation der Auswirkungen von Lasten, Gewichtskraft oder Beschleunigungen zur Bemessung und Überprüfung der Komponenten, und

-transiente Analyse, das heißt Simulation kompletter Zyklen und Abläufe zur präzisen Ermittlung der dynamischen Lasten und zur Beurteilung der Lebensdauer.

Zielgerichtete Auslegung von Anfang an

Mit zunehmendem Projektfortschritt entstehen virtuelle Prototypen, deren Aussagen der Realität stets einen Schritt voraus sind. Für ein erstes Simulationsmodell genügt zunächst ein Entwurf der Achskombinationen beziehungsweise der Achstypen, Abmessungen und Massen. CAD-Daten der umgebenden Konstruktion sind hilfreich, jedoch nicht Bedingung. Im Rahmen einer Modalanalyse berechnet Schunk Engineering daraus Eigenfrequenzen und Eigenformen.

Innerhalb kürzester Zeit lässt sich so eine steife und schwingungsarme Achs-Kombination ermitteln. Dies ermög-licht eine schnelle und sichere Beurteilung des Systems im Hinblick auf eine günstige Kombination von Steifigkeiten und Massen. Das Ergebnis ist ein Linearachsensystem mit minimierter Schwingungsanfälligkeit sowie Steifigkeitsempfehlungen für die umgebende Konstruktion.

Zweiter Simulationsschritt zeigt Belastungen und Verformungen unter Betriebsbedingungen

In einer zweiten Stufe werden zusätzlich Lasten und kinematische Angaben wie Wege, Geschwindigkeiten und Beschleunigungen berücksichtigt. Die Simulation zeigt dann Verformungen und Belastungen unter Betriebsbedingungen.

Zudem ist es möglich, die Grenzlasten und die Lebensdauer abzuschätzen. Mit Hilfe dieser Ergebnisse lässt sich effizient ein verformungs- und verschleißarmes System konstruieren.

In der dritten Stufe schließlich werden Abläufe als Abfolge kleiner Zeitschritte simuliert. So lassen sich Bewegungen und Verformungen im Betrieb beurteilen. Ermittelt werden dabei die zu erwartenden dynamischen Lastanteile sowie die zyklusspezifischen Belastungshöhen, Belastungsorte und -zeitpunkte. Anhand dieser Angaben ergeben sich Aussagen zu Lebensdauer, Zuverlässigkeit und Verfügbarkeit des Systems, so dass die gesamten Abläufe weiter optimiert werden können.

Ein universell einsetzbares Ablagesystem als Ergebnis

Innerhalb kürzester Zeit entstand auf diese Weise ein Ablagesystem nach dem Baukastenkonzept, das sich schnell an die jeweiligen Anforderungen in unterschiedlichen Branchen anpassen lässt. Die ungerichteten Teile werden von dem System über eine Pufferachse in Reihe gestapelt, die der Übergabelage der zu beladenden Behältnisse entspricht.

Anschließend übernimmt ein am Schunk-Raumportalsystem angebautes Greifersystem die Bauteile von der Pufferachse und legt diese in die vorgegebenen Behältnisse ab. Alle gängigen Behälter, die sich auf das Maß einer Europalette zurückführen lassen, wie Gitterboxen, Europaletten, Blisterverpackungen und Kleinladungsträger können von dem Kiwi-Ablagesystem verarbeitet werden. Ein Tandemprinzip ermöglicht den Wechsel der vollen Behälter, ohne den Produktionsprozess zu unterbrechen.

Greifersystem und Pufferzone je nach Anforderungen ausgelegt

Abhängig von den jeweiligen Anforderungen, vom Bauteil und den zu beladenden Behältnissen werden das Greifersystem und die Pufferzone ausgelegt. Das universell einsetzbare Ablagesystem lässt sich in Aufbau und Funktion sehr einfach an spezifische Anforderungen anpassen und ist zudem jederzeit erweiterbar.

In der Grundausführung Typ AGA 2400-2 verfügt das System über einen Verfahrweg in der X-Achse von 2400 mm, in der Y-Achse von 1220 mm und in der Z-Achse von 900 mm. Die Abmessungen betragen (L × B x H) 4000 mm × 2100 mm × 3500 mm. Das Maximalgewicht der Z-Achsanbindung liegt bei 15 kg. Als Linearachsen kommen hoch belastbare, langlebige und präzise Linearmodule mit Zahnriemenantrieb und Profilschienenführung aus dem System HSB von Schunk zum Einsatz.

Simulation nützt allen Beteiligten

Die Engineering-Leistungen von Schunk kommen allen Beteiligten zugute, denn außer den unmittelbaren Vorteilen in der Entwicklungsphase generiert die Simulation weitere Zusatzeffekte: Anwender profitieren von einer langen Lebensdauer und einer dauerhaft hohen Präzision des Systems, weil das Schwingungsverhalten, die Eigenfrequenz und die Stabilität optimiert sind.

Mögliche Schwachstellen werden bereits im Vorfeld identifiziert und ausgeschlossen. Zudem können auf Basis der Simulation konkrete Konstruktionsvorgaben und -richtlinien erstellt werden.

Wegen der bedarfsorientierten Auslegung gehören aus übertriebenem Sicherheitsdenken überdimensionierte Systeme der Vergangenheit an. Das senkt die Kosten der Module, reduziert das Gewicht der Anlage und den Energiebedarf im laufenden Betrieb. Die virtuelle Produktentwicklung leistet damit zusätzlich einen wichtigen Beitrag zur Kosteneinsparung und zum Schutz der Umwelt.

Johannes Grotz | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/umformtechnik/articles/230305/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics