Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Software sichert Presshärten digital ab

05.10.2008
Presshärten, auch Hot Forming genannt, ist ein relativ neues Verfahren der Umformtechnik, das sich in den letzten Jahren im Karosseriebau etabliert hat. Es bietet nach Einschätzung der Experten ein großes Entwicklungspotenzial, insbesondere für die virtuelle Prozessauslegung. Im Vergleich zum herkömmlichen Tiefziehen sind die Prozesse beim Presshärten sehr viel komplexer, da zur mechanischen Umformung noch der Einfluss der Temperatur kommt.

Für die Simulation des Umformprozesses beim Presshärten kommen auf die passende Software nicht wenige Besonderheiten zu. Denn dabei sind die thermischen und mechanischen Vorgänge zu koppeln. Zudem müssen die sich ständig ändernden Verhältnisse in der Platine, während des Transfers der Platine zum Werkzeug sowie bei Kontakt mit dem kühleren Werkzeug angemessen berücksichtigt werden.

Warmumformung verlangt einen zügigen Prozessverlauf

Dominiert wird das Presshärten von der hohen Temperatur, auf die die Platine aufgeheizt wird. Als Werkstoff kommt vorwiegend 22MnB5 zum Einsatz.

Dieser Werkstoff ändert seine mechanischen Eigenschaften signifikant bei höherer Temperatur. Die Platine ist dann weicher, das Formgebungsvermögen steigt und die erforderlichen Umformkräfte reduzieren sich. Gleichzeitig herrschen große Temperaturunterschiede zwischen Bauteil und Werkzeug.

Der Umform-Vorgang muss also zügig ablaufen, schließlich soll der Wärmeabfluss gering bleiben. Am Ende der Warmumformung wird das Bauteil rasch abgekühlt und seine Form dadurch gleichsam eingefroren beziehungsweise die Eigenschaften werden vergütet.

Presshärten erzeugt Bauteile mit hoher Festigkeit

Das Bauteil erhält auf diese Weise seine extrem hohe Festigkeit. Gleichzeitig treten durch diese Temperaturbehandlung Rückfederungseffekte in den Hintergrund. Die hohen Umform- und Abkühlgeschwindigkeiten haben allerdings ihren Preis, denn die Umformeigenschaften reagieren sensibel darauf. Aus diesem Grund ist es notwendig, die mechanischen Eigenschaften sowohl temperatur- als auch dehnratenabhängig zu betrachten.

Vor- und Nachteile der Temperatur und Geschwindigkeit gegeneinander abwägen – hier eröffnet sich das Betätigungsfeld für die Simulation.

Damit kann die Frage beantwortet werden, wie schnell sich umformen lässt, ohne dass die Dehnrate allzu kräftig ansteigt bei gleichzeitig maximaler Ausbringleistung. Dazu ist ein temperatur- und dehnratenabhängiges Materialmodell nötig. Mehrere Fließkurven, die jeweils bei unterschiedlichen Temperaturen beziehungsweise Umformgeschwindigkeiten aufgenommen wurden, sind in einer Matrix hinterlegt. Hinzu kommen die während der Umformung berechnete Temperaturverteilung im Blech sowie die lokale Umformgeschwindigkeit. Damit wird das lokal variierende Verfestigungsverhalten abgebildet.

Der Blechhalter bietet sich zur Prozessoptimierung an

Ein weiterer Optimierungsvorgang kann am Blechhalter durchgeführt werden. Anders als beim Kaltumformen, übt der Blechhalter beim Warmumformen keine Kraft auf das Blech aus. Es besteht eine kleine Distanz zwischen den beiden.

Wie groß diese Blechhalterdistanz genau ausfallen soll, kann am besten innerhalb einer Simulation aufgezeigt werden. Je größer dabei der Abstand ausfällt, umso eher bleibt die Wärme im Blech erhalten, das damit weich und gut umformbar ist. Gleichzeitig steigt jedoch die Gefahr der Faltenbildung und es gilt eine Bewertung vorzunehmen, wie der optimale Abstand einzustellen ist.

Aufwärmen und Umformen der Platine passieren an zwei unterschiedlichen Orten, das heißt, dazwischen findet ein Transport statt, was einen Wärmeabfluss bedeutet. Dieser kann beispielsweise durch eine regulierbare Wartezeit nach dem Einlegen der Platine in das Werkzeug beeinflusst werden.

Ein weiterer Effekt betrifft den Druck. Versuche zeigen, dass erhöhter Druck zwischen Werkstück und Werkzeug, beispielsweise während des Umformens, den Wärmeübergang spürbar beeinflusst. Beim Presshärten ist auch die Reibung im Vergleich zum konventionellen Tiefziehen deutlich höher und verlangt nach entsprechender Berücksichtigung.

Nicht relevante Gegebenheiten bleiben unberücksichtigt

Was wirklich keinen Vorteil für die Genauigkeit der Simulation bringt, kann vereinfacht oder weggelassen werden. Das trifft beispielsweise auf die Temperatur über die Dicke des Blechs zu. Sie lässt sich als konstant annehmen. Als konstant kann auch die Temperatur der Werkzeugoberfläche betrachtet werden.

Im Übrigen ist der Wärmeabfluss in Blechebenenrichtung bei kurzer Prozesszeit vernachlässigbar. Annahmen wie diese beschleunigen die Berechnung während der Simulation und liefern gleichwohl genaue Ergebnisse.

Eine Software, welche die Simulation des Presshärtens beherrscht, wird von Autoform angeboten. Den Nachweis erbracht hat ein Leistungsvergleich verschiedener Softwareanbieter aus Anlass der Numisheet 2008, einer internationalen Konferenz, die als Inhalt die numerische Simulation von Blechumformprozessen hat.

Ein Autoform-Anwender sowie Autoform Engineering selbst lieferten dort hervorragende Ergebnisse ab – mit einer um den Faktor zehn kürzeren Rechenzeit als andere Teilnehmer. Dabei wurden problematische Stellen im Bauteil äußerst zuverlässig und sehr schnell erkannt. Durch die rasche Verfügbarkeit und die erreichte Zuverlässigkeit der Ergebnisse qualifizierte sich die Autoform-Software für das Presshärten ganz besonders.

Presshärtvorgänge lassen sich hervorragend simulieren

Presshärtvorgänge lassen sich zukünftig mit Autoform-Incremental hervorragend simulieren, das Teil der integrierten Tooling and Tryout Solution von Autoform ist. Es besteht die volle Funktionalität beim Einbringen von unterschiedlichen Geometriemodifikationen.

Presshärtprozesse können damit beispielsweise hinsichtlich des Platinenzuschnitts (Autoform-Trim), der Rückkoppelung auf die Werkzeug-geometrie (Autoform-Die-Designer) oder der Robustheit (Autoform-Sigma) nahtlos übergehend untersucht werden. Die effektive und schnelle Methodenplanung und -absicherung gelingt dadurch zu einem recht frühen Zeitpunkt in der Projektlaufzeit.

Ausreichende Optimierungsschleifen für beste Wirtschaftlichkeit und höchste Prozesssicherheit sind damit auch unter Zeitdruck möglich und es ist letzten Endes auch eine reibungslose Werkzeugeinarbeitung zu erwarten, wodurch der Start of Production (SOP) weitgehend abgekürzt werden kann. Somit bietet die Simulation auch ein nicht unerhebliches Kostensenkungspotenzial.

Dr. Michael Kerausch ist Application Engineer bei der Autoform Engineering Deutschland GmbH in Dortmund.

Michael Kerausch | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/digitalefabrik/cadcam/articles/147024/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie