Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Signifikant mehr Produktivität bei UKP-Lasern

21.11.2016

Laser mit ultrakurzen Pulsen (UKP) bis hinunter in den Femtosekunden-Bereich sind in den letzten Jahren industriereif geworden. So manche Anwendung könnten sie mit der viel beschworenen »kalten Ablation« voranbringen – wenn sie denn mehr Durchsatz erreichen würden. Auf dem »4. UKP-Workshop – Ultrafast Laser Technology« im April 2017 in Aachen wird eine neue Generation Prozesstechnik diskutiert, die genau dort ansetzt.

Schon in den Neunziger Jahren verglichen Wissenschaftler die Materialbearbeitung mit Nano-, Piko- und Femtosekundenpulsen. Das Ergebnis war überraschend: Material wird mit den ultrakurzen Pulsen so schnell verdampft, dass kaum Wärme im Werkstück bleibt. Dabei sind die Oberflächen besonders glatt, die Schnitte äußerst präzise und der Prozess kaum materialabhängig.


Bild 1: Mit dem hybriden System aus frei programmierbarer Multistrahloptik und Galvo-Scanner kann ein Laserstrahl auf beliebig viele Einzelstrahlen aufgeteilt werden.

© Fraunhofer ILT, Aachen / Volker Lannert

Das war lange bekannt, aber erst in den letzten 10 Jahren haben die komplexen Strahlquellen ein Niveau erreicht, welches einen 24/7 Einsatz in der Industrie erlaubt. Inzwischen werden Systeme mit bis zu 100 Watt in Stückzahlen verkauft. In der Mikromaterialbearbeitung haben sich diese Systeme etabliert, gefragt sind inzwischen mehr Produktivität und stärkere Laser. Die Entwicklung von Strahlquellen im kW-Bereich dafür ist weit fortgeschritten, aber eine einfache Skalierung der Prozesse ist nicht ohne Weiteres möglich - der »Flaschenhals« ist jetzt die Prozesstechnik.

Wer ist schneller? Scanner versus Multistrahloptik

Neue UKP-Strahlquellen bieten mehr Leistung durch Repetitionsraten bis in den MHz-Bereich oder durch höhere Pulsenergien. Für die hohen Repetitionsraten zeigen neue Scannersysteme mit Polygonspiegeln vielversprechende Ergebnisse. Der Spot muss dabei auf dem Werkstück extrem schnell bewegt werden, damit nicht zu viele Pulse überlagert werden und der entstehende Hitzestau die Qualität der Bearbeitung nicht verschlechtert.

Scanner bieten eine hohe Flexibilität bei der zu bearbeitenden Kontur, allerdings bewegen sie nur einen einzelnen Spot auf der Werkstückoberfläche. Große Flächen mit wiederkehrenden Mustern lassen sich effizienter mit sogenannten Multistrahloptiken bearbeiten.

Eine Multistrahloptik teilt einen einzelnen Laserstrahl in viele Teilstrahlen auf. Das erfordert entsprechend höhere Laserpulsenergien damit jeder Teilstrahl auch noch Material abtragen kann. Bislang erprobt sind hier Mikrooptiken oder diffraktiv-optische Elemente, die aus einem Laserstrahl ein festes Muster erzeugen. Angepasst an die Anwendung kann das eine Linie sein, eine spezielle Kontur oder auch ein Muster aus Hunderten von Einzelstrahlen.

Dynamische Multistrahloptik nutzt Flüssigkristalle

Bisher wird die Strahlformung in Multistrahloptiken durch die Beugung des Laserstrahls an festen optischen Strukturen erreicht. Experten vom Fraunhofer ILT haben jetzt ein System entwickelt, bei dem sich das diffraktive Muster im 50-Hertz-Takt umschalten lässt. Dafür nutzen sie Spatial Light Modulators (SLM), die mit Flüssigkristallen das nötige Beugungsmuster erzeugen.

In einem Versuchsaufbau haben die Aachener Forscher das System optimiert und zusammen mit einem Galvanometer-Scanner erprobt. Mit einer passenden Optik werden die Bildfehler korrigiert, sodass auch große Werkstücke mit hoher Präzision bearbeitet werden können.
Die programmierbare Vielstrahloptik ermöglicht gerade bei UKP-Lasern mit höheren Pulsenergien eine deutliche Produktivitätssteigerung. Anvisiert sind Anwendungen in der Mikroelektronik oder bei der Texturierung von Oberflächen zum Beispiel im Konsumgüterbereich.

4. UKP-Workshop 2017

Produktivität und Prozesstechnik beim Einsatz von UKP-Lasern sind wichtige Themen auf dem »UKP-Workshop – Ultrafast Laser Technology« am 26. und 27. April 2017 in Aachen. Spezialisten aus der Laserentwicklung, der Verfahrenstechnik und der Industrie treffen sich dort inzwischen zum vierten Mal, um neue Ergebnisse und Erfahrungen aus der Anwendung auszutauschen. Mehr Informationen zur Veranstaltung finden Sie unter www.ultrakurzpulslaser.de

Ansprechpartner

Dipl.-Phys. Patrick Gretzki
Gruppe Mikro- und Nanostrukturierung
Telefon +49 241 8906-8078
patrick.gretzki@ilt.fraunhofer.de

Weitere Informationen:

http://www.ilt.fraunhofer.de

Petra Nolis M.A. | Fraunhofer-Institut für Lasertechnik ILT

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

23. Baltic Sea Forum am 11. und 12. Oktober nimmt Wirtschaftspartner Finnland in den Fokus

21.09.2017 | Veranstaltungen

6. Stralsunder IT-Sicherheitskonferenz im Zeichen von Smart Home

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

OLED auf hauchdünnem Edelstahl

21.09.2017 | Messenachrichten

Weniger (Flug-)Lärm dank Mathematik

21.09.2017 | Physik Astronomie

In Zeiten des Klimawandels: Was die Farbe eines Sees über seinen Zustand verrät

21.09.2017 | Geowissenschaften