Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus dem Schatten - Der neue Synchronreluktanzmotor

10.10.2011
Kompakte Synchronreluktanzmotoren von ABB erreichen hohen Wirkungsgrad

Der neue Synchronreluktanzmotor von ABB entspricht den Forderungen nach höheren Ausgangsleistungen, höherer Effizienz, längeren Wartungsintervallen und kompakterer Bauweise. Ein neuer Versuch, diesen Antrieb in der Industrie durchzusetzen.

Etwa 60 bis 65 Prozent des in der Industrie benötigten Stroms wird von Elektromotoren verbraucht. Hauptziel bei der Optimierung von Motoren ist daher eine effizientere Energienutzung durch Steigerung des Wirkungsgrads.

Bedeutende Einsparungen lassen sich zudem durch drehzahlgeregelte Antriebssysteme erzielen, die mittlerweile in 30 bis 40 Prozent aller neu installierten Motoren zum Einsatz kommen. Ein energieeffizienter Ansatz sind Synchronmotoren. Die gibt es in verschiedenen Varianten: Motoren mit Feldwicklung und bürstenlosen Erregern, Permanentmagnetmotoren oder Motoren, die nach dem Prinzip der magnetischen Reluktanz arbeiten (oft als synchrone Reluktanzmotoren bezeichnet). Ein Rotor eines solchen Motors verfügt weder über einen Kurzschlusskäfigläufer wie beim Asynchronmotor noch über Permanentmagnete oder eine Felderregerwicklung.

Stattdessen wird hier das Prinzip der magnetischen Reluktanz genutzt. Magnetische Reluktanz ist das magnetische Pendant zum elektrischen Widerstand. Der Rotor besitzt in einer Richtung einen möglichst geringen magnetischen Widerstand und rechtwinklig dazu eine hohe magnetische Reluktanz (beziehungsweise eine gute magnetische „Isolation“).

Das Drehmoment entsteht dadurch, dass der Rotor versucht, die magnetisch leitfähige Richtung am Statorfeld auszurichten. Die Höhe des erzeugten Drehmoments ist direkt proportional zur Ausprägung beziehungsweise zum Verhältnis der Induktivitäten der beiden magnetischen Richtungen des Rotors. Die Erfindung geht auf 1923 zurück. In der Industrie fand er jedoch kaum Anwendung, da er im direkten Netzanschluss nicht selbstständig anläuft.

Dank moderner drehzahlgeregelter Antriebe ist dies mittlerweile kein Problem mehr. Hinzu kam, dass in vielen früheren Veröffentlichungen zum Synchronreluktanzmotor die laut Berechnungen zu erwartenden überlegenen Drehmoment- und Effizienzeigenschaften gegenüber dem Asynchronmotor nicht deutlich wurden – für viele Experten ist dies der Grund für sein heutiges Schattendasein. Vermutlich fehlte es den ersten Ansätzen noch an einer optimierten Umrichtersteuerung.

Ein oft genannter Nachteil des Synchronreluktanzmotors ist der höhere Strombedarf für das gleiche Drehmoment im Vergleich zum Permanentmagnetmotor, da der Rotor durch den Stator magnetisiert werden muss. Allerdings wird der vom Netz aus betrachtete Leistungsfaktor durch den Umrichter bestimmt und liegt auch beim Synchronreluktanzmotor in allen Betriebsarten nahe bei eins.

Höhere Leistungsdichte und Wirkungsgrad

Bei den Synchronreluktanz-Rotoren und der Umrichtersteuerung von ABB ist der Motorstrom, der sich umgekehrt proportional zum Leistungsfaktor und Wirkungsgrad verhält, tatsächlich geringer als bei einer kleinen Asynchronmaschine mit gleichem Drehmoment und gleicher Drehzahl. Dies ist auf den erheblich besseren Wirkungsgrad zurückzuführen. Im Allgemeinen können die Synchronreluktanzmotoren mit Umrichtern der gleichen Größe betrieben werden wie ein Asynchronmotor mit gleicher Leistung und gleichem Drehmoment – allerdings mit höherer Leistungsdichte und höherem Wirkungsgrad. Ein weiterer bedeutender Vorteil des neuen Motors von ABB ist die Rotorstruktur. Ohne Magnete und Käfig ist der Rotor robuster als bei Asynchronmotoren oder Permanentmagnetmotoren-Maschinen. Zudem entfällt das Risiko eines permanenten Leistungsverlusts durch Entmagnetisierung bei einem Ausfall oder Überhitzung. Der Motor ist außerdem eigensicher im Betrieb, da durch die fehlenden Magnete keine elektromotorische Gegenspannung induziert wird.

Aus der weitgehenden Beseitigung der Rotorverluste und der optimierten Rotorstruktur ergeben sich eine Reihe von Vorteilen. Ein Motor mit dieser Technologie kann mit der nach IEC standardisierten Normleistung für die jeweilige Baugröße betrieben werden. In diesem Fall reicht die Effizienzsteigerung von über fünf Prozent für Maschinen im einstelligen Kilowatt-Bereich bis 0,5 Prozent für die größeren Maschinen (Baugröße 315). Wo also ein Asynchronmotor einen Temperaturanstieg nach Klasse F (105 Kelvin) erreicht hätte, bleibt der Synchronreluktanzmotor in der Wärmeklasse A (60 Kelvin). Nimmt man zum Beispiel einen Kompressor, der mit 4.500 Umdrehungen pro Minute betrieben wird, bleiben die Lagertemperaturen beim Synchronreluktanzmotor unter denen, die beim Betrieb mit einem größeren Asynchronmotor erreicht werden. Die niedrige Betriebstemperatur verlängert die Lebensdauer der Motorisolierung und der Lager beziehungsweise deren Schmierintervalle.

Hohe Drehmomentausbeute

Die beschriebene Technologie ermöglicht eine hohe Drehmomentausbeute. Da Verluste am Rotor im Vergleich zu Statorverlusten schwer zu kühlen sind, wirkt sich ihre nahezu vollständige Beseitigung besonders positiv auf das Drehmomentverhalten aus. Bei kleinen Motoren mit drei oder vier Kilowatt kann die Leistung bei gleichem Temperaturanstieg um bis zu 60 Prozent gesteigert werden. Bei einem 60-Kilowatt-Motor liegt die Steigerung im Vergleich zu einem Asynchronmotor im Bereich von 40 Prozent und bei einem 220-Kilowatt-Motor bei etwa 20 Prozent. In den meisten Fällen kann die gleiche Leistung mit einem Synchronreluktanzmotor erzielt werden, der um eine oder sogar zwei Baugrößen kleiner ist als ein entsprechender Asynchronmotor. Wichtig ist dies vor allem bei Anwendungen, bei denen platzsparende Motoren gefordert sind. Ein weiterer Pluspunkt ist die geringere Wärmeabgabe an benachbarte Maschinen- und Anlagenteile. Da weniger Wärme durch die Welle abgeleitet wird, sinkt die Lagertemperatur besonders auf der Antriebsseite. Last but not least haben die Rotoren aufgrund des Fehlens von Käfigläufer und Magneten ein um 30 bis 50 Prozent geringeres Massenträgheitsmoment. In besonders dynamischen Anwendungen sorgt das für weitere Effizienzvorteile, da die Motoren mit weniger Drehmoment beschleunigt und abgebremst werden können. Von der Installation und vom Betrieb her unterscheidet sich der leistungselektronische Teil des Umrichters für diesen Motor nicht von drehzahlgeregelten Antrieben für Asychron- oder Permanentmagnetmotoren. Zu den Standardmerkmalen gehören die Ermittlung des Motormodells auf der Basis von Typenschildangaben und ein geberloser Betrieb. Der Motor benötigt keine Drehzahlsensoren und bietet dennoch eine hohe Drehzahlgenauigkeit und Drehmomentdynamik. Bei Bedarf kann der Antrieb auf eine bestimmte Überlastfähigkeit und zyklische Belastbarkeit ausgelegt werden. bw

| handling
Weitere Informationen:
http://www.handling.de/Antriebe-Steuerungen-Komponenten/Synchronmotor/Aus-dem-Schatten.htm

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Nutzfahrzeuge: Neuer Professor entwickelt effizientere und leichtere Bauteile mit 3D-Metall-Drucker
03.05.2018 | Technische Universität Kaiserslautern

nachricht Die Zukunft des Fliegens auf dem Prüfstand
25.04.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

Passt eine ultrakalte Wolke aus zehntausenden Rubidium-Atomen in ein einzelnes Riesenatom? Forscherinnen und Forschern am 5. Physikalischen Institut der Universität Stuttgart ist dies erstmals gelungen. Sie zeigten einen ganz neuen Ansatz, die Wechselwirkung von geladenen Kernen mit neutralen Atomen bei weitaus niedrigeren Temperaturen zu untersuchen, als es bisher möglich war. Dies könnte einen wichtigen Schritt darstellen, um in Zukunft quantenmechanische Effekte in der Atom-Ion Wechselwirkung zu studieren. Das renommierte Fachjournal Physical Review Letters und das populärwissenschaftliche Begleitjournal Physics berichteten darüber.*)

In dem Experiment regten die Forscherinnen und Forscher ein Elektron eines einzelnen Atoms in einem Bose-Einstein-Kondensat mit Laserstrahlen in einen riesigen...

Im Focus: Algorithmen für die Leberchirurgie – weltweit sicherer operieren

Die Leber durchlaufen vier komplex verwobene Gefäßsysteme. Die chirurgische Entfernung von Tumoren ist daher oft eine schwierige Aufgabe. Das Fraunhofer-Institut für Bildgestützte Medizin MEVIS hat Algorithmen entwickelt, die die Bilddaten von Patienten analysieren und chirurgische Risiken berechnen. Leberkrebsoperationen werden damit besser planbar und sicherer.

Jährlich erkranken weltweit 750.000 Menschen neu an Leberkrebs, viele weitere entwickeln Lebermetastasen aufgrund anderer Krebserkrankungen. Ein chirurgischer...

Im Focus: Positronen leuchten besser

Leuchtstoffe werden schon lange benutzt, im Alltag zum Beispiel im Bildschirm von Fernsehgeräten oder in PC-Monitoren, in der Wissenschaft zum Untersuchen von Plasmen, Teilchen- oder Antiteilchenstrahlen. Gleich ob Teilchen oder Antiteilchen – treffen sie auf einen Leuchtstoff auf, regen sie ihn zum Lumineszieren an. Unbekannt war jedoch bisher, dass die Lichtausbeute mit Elektronen wesentlich niedriger ist als mit Positronen, ihren Antiteilchen. Dies hat Dr. Eve Stenson im Max-Planck-Institut für Plasmaphysik (IPP) in Garching und Greifswald jetzt beim Vorbereiten von Experimenten mit Materie-Antimaterie-Plasmen entdeckt.

„Wäre Antimaterie nicht so schwierig herzustellen, könnte man auf eine Ära hochleuchtender Niederspannungs-Displays hoffen, in der die Leuchtschirme nicht von...

Im Focus: Erklärung für rätselhafte Quantenoszillationen gefunden

Sogenannte Quanten-Vielteilchen-„Scars“ lassen Quantensysteme länger außerhalb des Gleichgewichtszustandes verweilen. Studie wurde in Nature Physics veröffentlicht

Forschern der Harvard Universität und des MIT war es vor kurzem gelungen, eine Rekordzahl von 53 Atomen einzufangen und ihren Quantenzustand einzeln zu...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

Visual-Computing an Bord der MS Wissenschaft

17.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

48V im Fokus!

21.05.2018 | Veranstaltungsnachrichten

Bose-Einstein-Kondensat im Riesenatom - Universität Stuttgart untersucht exotisches Quantenobjekt

18.05.2018 | Physik Astronomie

Countdown für Kilogramm, Kelvin und Co.

18.05.2018 | Physik Astronomie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics