Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Aus dem Schatten - Der neue Synchronreluktanzmotor

10.10.2011
Kompakte Synchronreluktanzmotoren von ABB erreichen hohen Wirkungsgrad

Der neue Synchronreluktanzmotor von ABB entspricht den Forderungen nach höheren Ausgangsleistungen, höherer Effizienz, längeren Wartungsintervallen und kompakterer Bauweise. Ein neuer Versuch, diesen Antrieb in der Industrie durchzusetzen.

Etwa 60 bis 65 Prozent des in der Industrie benötigten Stroms wird von Elektromotoren verbraucht. Hauptziel bei der Optimierung von Motoren ist daher eine effizientere Energienutzung durch Steigerung des Wirkungsgrads.

Bedeutende Einsparungen lassen sich zudem durch drehzahlgeregelte Antriebssysteme erzielen, die mittlerweile in 30 bis 40 Prozent aller neu installierten Motoren zum Einsatz kommen. Ein energieeffizienter Ansatz sind Synchronmotoren. Die gibt es in verschiedenen Varianten: Motoren mit Feldwicklung und bürstenlosen Erregern, Permanentmagnetmotoren oder Motoren, die nach dem Prinzip der magnetischen Reluktanz arbeiten (oft als synchrone Reluktanzmotoren bezeichnet). Ein Rotor eines solchen Motors verfügt weder über einen Kurzschlusskäfigläufer wie beim Asynchronmotor noch über Permanentmagnete oder eine Felderregerwicklung.

Stattdessen wird hier das Prinzip der magnetischen Reluktanz genutzt. Magnetische Reluktanz ist das magnetische Pendant zum elektrischen Widerstand. Der Rotor besitzt in einer Richtung einen möglichst geringen magnetischen Widerstand und rechtwinklig dazu eine hohe magnetische Reluktanz (beziehungsweise eine gute magnetische „Isolation“).

Das Drehmoment entsteht dadurch, dass der Rotor versucht, die magnetisch leitfähige Richtung am Statorfeld auszurichten. Die Höhe des erzeugten Drehmoments ist direkt proportional zur Ausprägung beziehungsweise zum Verhältnis der Induktivitäten der beiden magnetischen Richtungen des Rotors. Die Erfindung geht auf 1923 zurück. In der Industrie fand er jedoch kaum Anwendung, da er im direkten Netzanschluss nicht selbstständig anläuft.

Dank moderner drehzahlgeregelter Antriebe ist dies mittlerweile kein Problem mehr. Hinzu kam, dass in vielen früheren Veröffentlichungen zum Synchronreluktanzmotor die laut Berechnungen zu erwartenden überlegenen Drehmoment- und Effizienzeigenschaften gegenüber dem Asynchronmotor nicht deutlich wurden – für viele Experten ist dies der Grund für sein heutiges Schattendasein. Vermutlich fehlte es den ersten Ansätzen noch an einer optimierten Umrichtersteuerung.

Ein oft genannter Nachteil des Synchronreluktanzmotors ist der höhere Strombedarf für das gleiche Drehmoment im Vergleich zum Permanentmagnetmotor, da der Rotor durch den Stator magnetisiert werden muss. Allerdings wird der vom Netz aus betrachtete Leistungsfaktor durch den Umrichter bestimmt und liegt auch beim Synchronreluktanzmotor in allen Betriebsarten nahe bei eins.

Höhere Leistungsdichte und Wirkungsgrad

Bei den Synchronreluktanz-Rotoren und der Umrichtersteuerung von ABB ist der Motorstrom, der sich umgekehrt proportional zum Leistungsfaktor und Wirkungsgrad verhält, tatsächlich geringer als bei einer kleinen Asynchronmaschine mit gleichem Drehmoment und gleicher Drehzahl. Dies ist auf den erheblich besseren Wirkungsgrad zurückzuführen. Im Allgemeinen können die Synchronreluktanzmotoren mit Umrichtern der gleichen Größe betrieben werden wie ein Asynchronmotor mit gleicher Leistung und gleichem Drehmoment – allerdings mit höherer Leistungsdichte und höherem Wirkungsgrad. Ein weiterer bedeutender Vorteil des neuen Motors von ABB ist die Rotorstruktur. Ohne Magnete und Käfig ist der Rotor robuster als bei Asynchronmotoren oder Permanentmagnetmotoren-Maschinen. Zudem entfällt das Risiko eines permanenten Leistungsverlusts durch Entmagnetisierung bei einem Ausfall oder Überhitzung. Der Motor ist außerdem eigensicher im Betrieb, da durch die fehlenden Magnete keine elektromotorische Gegenspannung induziert wird.

Aus der weitgehenden Beseitigung der Rotorverluste und der optimierten Rotorstruktur ergeben sich eine Reihe von Vorteilen. Ein Motor mit dieser Technologie kann mit der nach IEC standardisierten Normleistung für die jeweilige Baugröße betrieben werden. In diesem Fall reicht die Effizienzsteigerung von über fünf Prozent für Maschinen im einstelligen Kilowatt-Bereich bis 0,5 Prozent für die größeren Maschinen (Baugröße 315). Wo also ein Asynchronmotor einen Temperaturanstieg nach Klasse F (105 Kelvin) erreicht hätte, bleibt der Synchronreluktanzmotor in der Wärmeklasse A (60 Kelvin). Nimmt man zum Beispiel einen Kompressor, der mit 4.500 Umdrehungen pro Minute betrieben wird, bleiben die Lagertemperaturen beim Synchronreluktanzmotor unter denen, die beim Betrieb mit einem größeren Asynchronmotor erreicht werden. Die niedrige Betriebstemperatur verlängert die Lebensdauer der Motorisolierung und der Lager beziehungsweise deren Schmierintervalle.

Hohe Drehmomentausbeute

Die beschriebene Technologie ermöglicht eine hohe Drehmomentausbeute. Da Verluste am Rotor im Vergleich zu Statorverlusten schwer zu kühlen sind, wirkt sich ihre nahezu vollständige Beseitigung besonders positiv auf das Drehmomentverhalten aus. Bei kleinen Motoren mit drei oder vier Kilowatt kann die Leistung bei gleichem Temperaturanstieg um bis zu 60 Prozent gesteigert werden. Bei einem 60-Kilowatt-Motor liegt die Steigerung im Vergleich zu einem Asynchronmotor im Bereich von 40 Prozent und bei einem 220-Kilowatt-Motor bei etwa 20 Prozent. In den meisten Fällen kann die gleiche Leistung mit einem Synchronreluktanzmotor erzielt werden, der um eine oder sogar zwei Baugrößen kleiner ist als ein entsprechender Asynchronmotor. Wichtig ist dies vor allem bei Anwendungen, bei denen platzsparende Motoren gefordert sind. Ein weiterer Pluspunkt ist die geringere Wärmeabgabe an benachbarte Maschinen- und Anlagenteile. Da weniger Wärme durch die Welle abgeleitet wird, sinkt die Lagertemperatur besonders auf der Antriebsseite. Last but not least haben die Rotoren aufgrund des Fehlens von Käfigläufer und Magneten ein um 30 bis 50 Prozent geringeres Massenträgheitsmoment. In besonders dynamischen Anwendungen sorgt das für weitere Effizienzvorteile, da die Motoren mit weniger Drehmoment beschleunigt und abgebremst werden können. Von der Installation und vom Betrieb her unterscheidet sich der leistungselektronische Teil des Umrichters für diesen Motor nicht von drehzahlgeregelten Antrieben für Asychron- oder Permanentmagnetmotoren. Zu den Standardmerkmalen gehören die Ermittlung des Motormodells auf der Basis von Typenschildangaben und ein geberloser Betrieb. Der Motor benötigt keine Drehzahlsensoren und bietet dennoch eine hohe Drehzahlgenauigkeit und Drehmomentdynamik. Bei Bedarf kann der Antrieb auf eine bestimmte Überlastfähigkeit und zyklische Belastbarkeit ausgelegt werden. bw

| handling
Weitere Informationen:
http://www.handling.de/Antriebe-Steuerungen-Komponenten/Synchronmotor/Aus-dem-Schatten.htm

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Luftturbulenzen durch Flugzeuge bald beherrschbar
08.12.2017 | Universität Rostock

nachricht Ein MRT für Forscher im Maschinenbau
23.11.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Immunsystem - Blutplättchen können mehr als bislang bekannt

LMU-Mediziner zeigen eine wichtige Funktion von Blutplättchen auf: Sie bewegen sich aktiv und interagieren mit Erregern.

Die aktive Rolle von Blutplättchen bei der Immunabwehr wurde bislang unterschätzt: Sie übernehmen mehr Funktionen als bekannt war. Das zeigt eine Studie von...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Call for Contributions: Tagung „Lehren und Lernen mit digitalen Medien“

15.12.2017 | Veranstaltungen

Die Stadt der Zukunft nachhaltig(er) gestalten: inter 3 stellt Projekte auf Konferenz vor

15.12.2017 | Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Weltrekord: Jülicher Forscher simulieren Quantencomputer mit 46 Qubits

15.12.2017 | Informationstechnologie

Wackelpudding mit Gedächtnis – Verlaufsvorhersage für handelsübliche Lacke

15.12.2017 | Verfahrenstechnologie

Forscher vereinfachen Installation und Programmierung von Robotersystemen

15.12.2017 | Energie und Elektrotechnik