Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rührreibschweißen dreidimensionaler Konturen mit dem Roboter

19.08.2009
Leichtbau-Werkstoffe verlangen nach ebenso alternativen Fertigungstechniken. Ein für Aluminium sehr gut geeignetes Fügeverfahren ist das Rührreibschweißen. Dabei stellen Roboter, verglichen mit konventionellen Sonderschweißanlagen, eine kostengünstige Alternative dar, um auch komplexe Nahtverläufe zu realisieren.

Im Verkehrswesen können durch die Reduktion der Fahrzeugmasse Einsparungen im Treibstoffverbrauch erzielt werden. Um dies zu erreichen, bietet sich neben einer optimierten Bauteilgestaltung auch die Verwendung alternativer Werkstoffe mit geringerer Dichte an. Häufig sind dies Aluminiumwerkstoffe, die bereits bei Fahrzeugen im Premiumsegment eingesetzt werden.

Aluminiumlegierungen gelten als konventionell schwer oder nicht schmelzschweißbar

Die Verwendung dieser Werkstoffe zieht jedoch auch neue Herausforderungen hinsichtlich der einzusetzenden Fertigungstechniken nach sich. So gelten viele Aluminiumlegierungen aufgrund ihrer Heißrissanfälligkeit und ihrer Neigung zur Porenbildung als konventionell schwer oder nicht schmelzschweißbar. Daher müssen bei der Einführung solcher Werkstoffe alternative Fertigungstechniken untersucht und angewendet werden.

Das Rührreibschweißen (englisch: Friction Stir Welding, FSW) bezeichnet ein Fügeverfahren, das zwei Werkstoffe unterhalb ihres Schmelzpunktes stoffschlüssig miteinander verbindet. Dabei kommt ein verschleißfestes, rotierendes Werkzeug zum Einsatz, das während des Schweißprozesses unter hoher Anpresskraft über die Fügepartner geführt wird. Aluminium und dessen Legierungen sind besonders für dieses Fügeverfahren geeignet.

Mit Rührreibschweißen werden sehr gute Nahtqualitäten erreicht

Darüber hinaus können im Vergleich zu konventionellen Schweißverfahren sehr gute Nahtqualitäten erreicht werden, weil der Wärmeeintrag in die Fügepartner verhältnismäßig gering ist. Neben vielen Vorteilen hinsichtlich Robustheit, Verzug, Nahtvorbereitung und Abschirmung bietet das Verfahren die Möglichkeit, unterschiedliche Legierungen in verschiedenen Dicken miteinander und ohne Schweißzusatzwerkstoffe zu fügen.

Dennoch resultiert ein Nachteil des Rührreibschweißens aus dem hohen Kraftbedarf, mit dem das Werkzeug auf die Fügepartner gepresst werden muss. Häufig wird daher auf Sonderschweißanlagen zurückgegriffen, die aufgrund ihrer sehr steifen Bauweise diese Kräfte bereitstellen können. Diese liegen je nach Anwendung im ein- bis zweistelligen kN-Bereich.

Die Fähigkeit für komplexere Nahtformen ist dabei nur bei sehr kostenintensiven Anlagen gegeben. Für Anwendungen mit Einschweißtiefen von einigen Millimetern befinden sich jedoch diese Kräfte in Größenordnungen, die auch von Schwerlastrobotern bereitgestellt werden können.

Seit 2005 beschäftigt sich das iwb der TU München mit dem Einsatz eines Schwerlastroboters zum Rührreibschweißen. Eine entsprechend aufgebaute Anlage besteht aus einem modifizierten Standardroboter mit einer FSW-tauglichen Spindel. Eine integrierte Kraftregelung stellt während des Schweißens eine konstante Anpresskraft des Werkzeuges auf die Fügepartner sicher.

Demonstrator für die Anlagenfähigkeit stammt aus der Luftfahrtbranche

Es konnte bereits nachgewiesen werden, dass mit dem installierten System selbst in unterschiedlichen Schweißlagen Nahtqualitäten erzielt werden, die unter Anwendung identischer Schweißparameter auch auf FSW-Anlagen erreicht werden. Ein Einfluss der vergleichsweise niedrigen Gesamtsteifigkeit auf die Nahtgüte wurde bei diversen Aluminiumwerkstoffen mit Dicken von 0,3 bis 8 mm nicht festgestellt.

Als Demonstrator für die Anlagenfähigkeit in der Luftfahrtbranche wurden zwei Rumpfsegmente eines Passagierflugzeuges erfolgreich verschweißt. Die Gesamtnahtlänge beträgt bei diesem Beispiel etwa 2,5 m und wurde durch zwei Teilnähte realisiert.

Für Anwendungen außerhalb der Luft- und Raumfahrt müssen jedoch auch komplexere Nahtformen beherrscht werden, für die der Roboter aufgrund seiner hohen Flexibilität bestens geeignet ist. Daher wurde die Fähigkeit des Prozesses und der Anlage für das Schweißen über Radien im Bereich von 104,5 bis 14,5 mm (Außenradius) untersucht. Dabei zeigt sich, dass der Schweißprozess insbesondere bei engeren Radien einer Anpassung hinsichtlich der verwendeten Parameter bedarf.

Unter der Voraussetzung, dass das Werkzeug in einem Anstellwinkel von 2° stechend über das Werkstück geführt wird, ergibt sich beim Schweißen in der Ebene eine sichelförmige Kontaktfläche auf dem Bauteil. Wird das Werkzeug über eine konvexe Oberfläche geführt, kann dessen hinterer Teil je nach Werkzeug- und Werkstückgeometrie den Kontakt zum Bauteil verlieren.

Werkstoff muss ausreichend verdichtet werden

Dieser ist für den Schweißprozess jedoch sehr wichtig, um eine ausreichende Verdichtung des Werkstoffes um den Schweißstift zu gewährleisten. Abhilfe schafft ein entsprechend erhöhter Anstellwinkel des Werkzeuges zum Bauteil, der von der Werkstückkrümmung abhängig ist.

Des Weiteren muss ein besonderes Augenmerk auf die Schweißanlage gelegt werden. Grund dafür sind elastische Verformungen des Roboters wegen der wirkenden Prozesskräfte, die zu Abdrängungen des Werkzeugbezugspunktes von der programmierten Sollposition führen. Eine Kraftregelung ist daher bei Knickarmrobotern zwingend notwendig, um durch das Nachführen des Werkzeuges in axialer Richtung einen stabilen Rührreibschweißprozess zu gewährleisten.

Beim Schweißen über komplex geformte Bauteile ist auch die Werkzeugabdrängung in der Schweißebene von großer Bedeutung. Diese muss durch Ausgleichsbewegungen beim Übergang von ebenen zu konvexen Oberflächen berücksichtigt werden, um ein zu frühes Umorientieren des Werkzeuges in den Radiusbereich zu verhindern.

3 mm dicke Bleche mit Außenradius von minimal 14,5 mm werden fehlerfrei gefügt

Unter Beachtung dieser Faktoren können mit dem aufgebauten System 3 mm dicke Bleche mit einem Außenradius von minimal 14,5 mm fehlerfrei gefügt werden. Der Nahtfehler bei theoretisch genauer Bahnführung entsteht durch ein zu frühes Umorientieren des Werkzeuges, wodurch sich dieses aufgrund eines dadurch negativen Anstellwinkels in die Fügepartner eingräbt.

Zudem kollidiert der Werkzeugstift mit der Spannvorrichtung. Bei der optimierten Schweißbahn wird die zu frühe Umorientierung des Werkzeuges verhindert und zudem der Anstellwinkel erhöht, was eine fehlerfreie und geschlossene Schweißnaht zur Folge hat.

Die im Radius entstehende charakteristische Nahtform weist aufgrund der veränderten Werkzeugkontaktbedingungen an den Rändern jeweils eine Vertiefung auf, wodurch der Nahtquerschnitt an diesen Stellen reduziert ist. Die Verbindung führt im Vergleich zur ebenen Schweißnaht zwar zu geringeren mechanischen Eigenschaften, für naturharte Legierungen wie den Werkstoff AW-5083-H111 betragen sie dennoch bis zu 90% der Grundwerkstofffestigkeit bezogen auf den Querschnitt des Grundmaterials.

Prof. Dr.-Ing. Michael F. Zäh ist Inhaber des Lehrstuhles für Werkzeugmaschinen und Fertigungstechnik der Technischen Universität München. Der Lehrstuhl gehört zum Institut für Werkzeugmaschinen und Betriebswissenschaften (iwb). Dipl.-Ing. Georg Völlner ist dort wissenschaftlicher Mitarbeiter in der Themengruppe Fügetechnologien.

Michael F. Zäh und Georg Völlner | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/verbindungstechnik/articles/226200/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht CI-Maschine von EMAG ECM: Hocheffektive Lösung für das Entgraten von komplexen Bauteilen
12.04.2018 | EMAG GmbH & Co. KG

nachricht Kaltmassivumformung: auch komplexe Bauteilherstellung virtuell und kostengünstig designen
29.03.2018 | Fraunhofer-Institut für Werkstoffmechanik IWM

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: BAM@Hannover Messe: Innovatives 3D-Druckverfahren für die Raumfahrt

Auf der Hannover Messe 2018 präsentiert die Bundesanstalt für Materialforschung und -prüfung (BAM), wie Astronauten in Zukunft Werkzeug oder Ersatzteile per 3D-Druck in der Schwerelosigkeit selbst herstellen können. So können Gewicht und damit auch Transportkosten für Weltraummissionen deutlich reduziert werden. Besucherinnen und Besucher können das innovative additive Fertigungsverfahren auf der Messe live erleben.

Pulverbasierte additive Fertigung unter Schwerelosigkeit heißt das Projekt, bei dem ein Bauteil durch Aufbringen von Pulverschichten und selektivem...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: IWS-Ingenieure formen moderne Alu-Bauteile für zukünftige Flugzeuge

Mit Unterdruck zum Leichtbau-Flugzeug

Ingenieure des Fraunhofer-Instituts für Werkstoff- und Strahltechnik (IWS) in Dresden haben in Kooperation mit Industriepartnern ein innovatives Verfahren...

Im Focus: Moleküle brillant beleuchtet

Physiker des Labors für Attosekundenphysik, der Ludwig-Maximilians-Universität und des Max-Planck-Instituts für Quantenoptik haben eine leistungsstarke Lichtquelle entwickelt, die ultrakurze Pulse über einen Großteil des mittleren Infrarot-Wellenlängenbereichs generiert. Die Wissenschaftler versprechen sich von dieser Technologie eine Vielzahl von Anwendungen, unter anderem im Bereich der Krebsfrüherkennung.

Moleküle sind die Grundelemente des Lebens. Auch wir Menschen bestehen aus ihnen. Sie steuern unseren Biorhythmus, zeigen aber auch an, wenn dieser erkrankt...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

infernum-Tag 2018: Digitalisierung und Nachhaltigkeit

24.04.2018 | Veranstaltungen

Fraunhofer eröffnet Community zur Entwicklung von Anwendungen und Technologien für die Industrie 4.0

23.04.2018 | Veranstaltungen

Mars Sample Return – Wann kommen die ersten Gesteinsproben vom Roten Planeten?

23.04.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Von der Genexpression zur Mikrostruktur des Gehirns

24.04.2018 | Biowissenschaften Chemie

Bestrahlungserfolg bei Hirntumoren lässt sich mit kombinierter PET/MRT vorhersagen

24.04.2018 | Medizintechnik

RWI/ISL-Containerumschlag-Index auf hohem Niveau deutlich rückläufig

24.04.2018 | Wirtschaft Finanzen

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics