Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Rostocker Forscher entwickeln Mess-System für Schiffbau-Versuchsanstalten

30.03.2015

Durch wissenschaftlich fundierte Daten der Forscher um Professor Nils Damaschke vom Institut für Allgemeine Elektrotechnik der Universität Rostock wird es künftig möglich, die Propellerform für Schiffe so zu optimieren, dass weniger Kraftstoff verbraucht und der Propellerverschleiß auf Grund von Kavitation reduziert werden kann. Die Wissenschaftler arbeiten inzwischen an der weiteren Verfeinerung eines kommerziellen Mess-Systems für die weltweit agierenden Schiffbau-Versuchsanstalten.

Kleinste Partikel spielen im täglichen Leben eine immer größere Rolle. Ob es sich um Schadstoffe in der Luft (Feinstaubbelastung) oder Zerstäubungsprozesse durch Kraftstoffeinspritzung im Auto handelt, wenn aktuell hohe Werte bekannt gegeben werden, schlagen vielfach die Alarmglocken.


Prof. Nils Damaschke (re) und Eric Ebert zeigen den Laboraufbau der HDNC-Technik

Julia Tetzke/Uni Rostock

Forscher des Instituts für Allgemeine Elektrotechnik der Universität Rostock unter Leitung von Professor Nils Damaschke haben jetzt ein Partikelmesssystem entwickelt, das kleinste Partikel und Blasen von einem Tausendstel bis zu einem zehntel Millimeter auf zwei Meter Entfernung berührungslos vermessen und sofort die Ergebnisse präsentieren kann. Dadurch wird es auch möglich, in den Strömungskanälen der zwei Schiffbau-Versuchsanstalten und in der freien See am realen Schiff unter rauen Bedingungen Mikropartikel ohne Probeentnahme zu vermessen.

Das Institut für Allgemeine Elektrotechnik war bereits zu DDR-Zeiten im „Ostblock“ führend im Bereich der laserbasierten Geschwindigkeits- und Partikelmesstechnik. An diesen Erfolg knüpft das Institut von Prof. Damaschke an. Die heutige Herausforderung: Hohe Kraftstoffpreise und die Klimadebatte zwingen Reedereien beim Schiffsneubau zum Umdenken.

Derzeit machen die Energiekosten etwa die Hälfte der Betriebskosten in der Schifffahrt aus. Sinkende Frachtraten erhöhen zusätzlich den Bedarf an möglichst effizienter Technik. Aus diesem Grund wird an neuen Schiffsformen und Propellergeometrien durch norddeutsche Schiffbau-Versuchsanstalten und Universitäten geforscht. Wer heute einen Ozeanriesen bauen lässt, fordert nicht nur ausreichende Transportfähigkeit, sondern auch hohe Effizienz und Sparsamkeit.

Bereits seit 2009 laufen am Institut mehrere Forschungsprojekte des Bundesministeriums für Wirtschaft mit Industrie- und Hochschulpartnern, um die Prognosesicherheit der Schiffe für mehr Effizienz erheblich zu verbessern. „Die Reeder wollen wissen, wie ein Schiff, Motoren und Propeller gebaut werden müssen, so dass sie im realen Betrieb möglichst wenig Treibstoff verbrauchen und so sicher wie möglich auf den Weltmeeren fahren können“, skizziert Professor Damaschke die Herausforderungen.

So genannte Kavitationseffekte an Schiffspropellern entstehen am Übergang von der Saug-Seite zur Druckseite eines Propellers und sorgen dafür, dass Blasen erst aufgerissen werden und dann in der Nähe des Propellers implodieren. Kavitation lässt sich so erklären: Wenn Flüssigkeiten mit einer hohen Geschwindigkeit strömen oder wenn sich ein Objekt sehr schnell durch eine Flüssigkeit bewegt, können sich spontan Dampfblasen bilden. Dieser physikalische Effekt wird als Kavitation bezeichnet.

In Wasser kann sie bereits ab einer Geschwindigkeit von 14 Metern pro Sekunde auftreten, führt zu erhöhtem Verschleiß und senkt die Effektivität des Antriebs. Das Team um Prof. Damaschke hat diesen sehr komplexen Effekt untersucht und mathematisch fassbar gemacht, was für eine qualitativ hochwertige Propellergeneration künftig zu beachten ist.

Durch die Daten der Rostocker Forscher wird es für die Numerik des Schiffbaus in Zukunft möglich, die Propellerform so zu optimieren, dass weniger Kraftstoff verbraucht und der Propellerverschleiß auf Grund von Kavitation reduziert werden kann.

„Wir arbeiten inzwischen an der weiteren Verfeinerung eines kommerziellen Messsystems für die weltweit agierenden Versuchsanstalten“, bilanziert der 44-Jährige Professor, der in Rostock studiert und an der Technischen Universität Darmstadt zur Geschwindigkeits- und Partikelmesstechnik promoviert hat, bevor er 2006 einen Ruf an seine Heimat-Universität Rostock annahm.

Das Forscherteam um Prof. Damaschke hat umfangreiche Modellversuche an Strömungs- und Kavitationskanälen sowie auf einem speziell ausgerüsteten Fährschiff mit hochspezialisierter Messtechnik vorzuweisen. So wurden in den Strömungskanälen der Versuchsanstalten und in der freien See am realen Schiff unter rauen Bedingungen Mikropartikel ohne Probeentnahme vermessen und ausgewertet.

Eine Schlüsselfunktion der Forschung für effizienteren Schiffbau hat in Rostock die optische 3D-Messtechnik. „Es können die drei räumlichen Geschwindigkeitskomponenten der Strömung erfasst, Partikel charakterisiert und klassifiziert werden“, sagt Jung-Forscher Eric Ebert.

Die Rostocker haben seit 2012 die so genannte Hydrodynamic Nuclei Concenrtation-Technik so weit entwickelt, dass sie nicht nur unter Laborbedingungen funktioniert, sondern auch auf einer RoRo-Fähre, die zwischen Rotterdam und Dublin verkehrt. Die HDNC-Technik ist ein laserbasiertes Verfahren und eine zielgerichtet Weiterentwickelung der Interferometric Particle Imaging-Technik.

Die Strömung wird dabei mit einem grünen Laserstrahl beleuchtet und mit einer Kamera durch eine Optik unscharf aufgezeichnet. Das Ergebnis sind Abbildungen der Partikel, die ein Interferenzmuster zeigen. Aus der Analyse der Interferenzmuster ergeben sich beispielsweise die Partikelklasse und die Blasengröße. „Wir haben die Bläschen unter dem Schiff im Zustrom des Propellers analysiert und für nummerische Kavitationsuntersuchungen der TU Hamburg Harburg bereitgestellt“, sagt Eric Ebert.

Er verweist auch auf die vielfältigen Anwendungsmöglichkeiten der Messtechnik. An der Universität Rostock wird die Technik beispielsweise zur Untersuchung von 3D-Druckvorgängen und zum Finden von Lufteinschlüssen in Epoxyd-Harzen erprobt. In der Spraydiagnostik können beispielsweise Größenveränderungen von Partikeln während des Gefriertrocknens gemessen werden.

Auch Pumpen-Hersteller sind ähnlich wie Propellerhersteller an Kavitationsuntersuchungen interessiert, da die Kavitation ein unerwünschter Prozess ist, der zu Verschleiß und Vibrationen führt. Insgesamt ist die durch die Universität Rostock entwickelte HDNC-Technik also für viele Industriebereiche interessant, wo es um das Vermessen kleinster Tropfen oder Blasen geht. Text: Wolfgang Thiel

Kontakt
Universität Rostock
Fakultät für Informatik und Elektrotechnik
Prof. Dr. Nils Andreas Damaschke
Tel: 0381 498 7050
Mail: nils.damaschke@uni-rostock.de

Ingrid Rieck | Universität Rostock
Weitere Informationen:
http://www.uni-rostock.de

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie