Ratterschwingungen dämpfen beim Einlippen-Tiefbohren

Das Tiefbohren ist ein spanendes Bearbeitungsverfahren zur Herstellung von Bohrungen mit Länge-zu-Durchmesser-Verhältnissen (l/d) bis zu 250. Bei der spanenden Fertigung von Bohrungen mit großem l/d-Verhältnis treten besonders bei hohen Vorschubwerten aufgrund der notwendigen schlanken Werkzeuggestalt häufig dynamische Instabilitäten auf. Das daraus resultierende Rattern beeinträchtigt sowohl die Qualität der erzeugten Bohrungen als auch die Lebensdauer der eingesetzten Werkzeuge. Nachfolgend wird die Entwicklung und Erprobung eines adaptronischen Werkzeughalters zur Dämpfung der auftretenden Torsionsschwingungen beschrieben und die dadurch erreichbare Prozessberuhigung beziffert.

Die Steigerung von Vorschubgeschwindigkeiten zur Reduzierung der Hauptzeit wird für spanende Fertigungsverfahren wie das Tiefbohren als ein wichtiges Ziel angestrebt. Jedoch treten dadurch in den meisten Fällen Werkzeug- und Maschinenschwingungen auf, so dass eine Steigerung der Produktivität nicht gegeben ist. Werkzeugseitig lassen sich Biegeschwingungen mit Hilfe von Lünetten verringern, jedoch ist es bisher schwierig, Torsionsschwingungen zu dämpfen.

Adaptiver Werkzeughalter passt sich dem Prozess an

Am Institut für Spanende Fertigung (ISF) wurde zu diesem Zweck ein adaptiver Werkzeughalter für das Einlippen-Tiefbohren entwickelt. Aufgrund ihrer Fähigkeit zur prozesszustandsabhängigen Anpassung stellen adaptronische Konzepte eine Lösungsmöglichkeit mit hohem Potenzial dar. Zusätzliche Anforderung bei der Entwicklung des Systems war eine Umsetzung als kompakte, autark funktionierende Einheit, die ohne größeren Aufwand in bestehende Maschinenkonzepte integrierbar ist.

Problematisch ist, dass aufgrund der Schwingung mit der ersten Eigenfrequenz die größte Schwingungsamplitude am Bohrkopf auftritt, wo aus Platzgründen ein Dämpfereinsatz nicht möglich ist. Mit zunehmender Entfernung der Dämpferwirkstelle vom Amplitudenmaximum nimmt somit bei steigender Bohrtiefe auch die Effektivität der Schwingungsdämpfung ab. Eine Lösung des Problems ist eine torsionselastische Einspannung des Werkzeugs. Dadurch wird erreicht, dass über die gesamte Länge des Werkzeugs die Schwingungsamplitude konstant bleibt, so dass auch bei maximaler Bohrtiefe dem Schwingungsprozess noch Energie entzogen werden kann.

Das entwickelte System arbeitet in Form einer Kupplung zur Entkopplung von Maschinenspindel und Werkzeug. Dies ist notwendig, um eine Relativbewegung zwischen diesen Teilen zu ermöglichen. Die Dämpfung dieser Relativbewegung stabilisiert den Prozess. Das entwickelte System besteht aus zwei gegeneinander verdrehbaren Gehäuseteilen, die ineinander gelagert sind. Zwischen diesen Gehäusehälften befindet sich in einem zylindrischen Spalt ein magnetorheologisches Fluid (MRF) zur Momentübertragung. Magnetorheologische Fluide sind Dispersionen, bestehend aus einer Trägerflüssigkeit, in der Regel ein Silikonöl, und darin dispergierten magnetisierbaren Metallteilchen. Bei Anlegen eines Magnetfeldes bilden diese Metallteilchen Ketten entlang der magnetischen Feldlinien aus.

Dämpfungsverhalten per Stromstärke beeinflussen

Dadurch wird die Bewegung der Basisflüssigkeit zwischen den Ketten erschwert und die Viskosität der Dispersion ändert sich. Dieser Effekt ist von flüssig bis nahezu fest einstellbar.

Im Anwendungsfall befinden sich seitlich des MRF-gefüllten Spaltes Spulen zur Erzeugung der erforderlichen magnetischen Felder. Über die Stromstärke lässt sich das Dämpfungsverhalten des adaptronischen Werkzeughalters in gewünschter Weise beeinflussen. Die Art der Regelung hängt dabei vom jeweiligen Prozesszustand ab. Bei Auftreten von Rattern kann die Schnittstelle zwischen Antrieb und Abtrieb weicher gestaltet werden, um so die Schwingungsenergie zu dämpfen und durch innere Reibung in Form von Wärme zu dissipieren.

Zur Erfassung des aktuellen Prozesszustands, also des Maßes der aktuellen Torsionsschwingung, wurden Beschleunigungsaufnehmer an der Werkzeugaufnahme der Adaptronik appliziert. Diese befinden sich in einer 180°-Anordnung zueinander, um so sicher Torsionsschwingungen detektieren zu können. Die Signale der Beschleunigungsaufnehmer werden während des Prozesses über eine kontaktlose Datenübertragung (Telemetrie) an einen Messrechner zur Signalauswertung übermittelt.

Dort findet die Prozessanalyse statt und das System kann selbstständig eine Veränderung der Stromstärke vornehmen, um so das mechanische System zu verändern und den Prozess zu beruhigen. Der erreichte Effekt wird wiederum über die Beschleunigungssensoren detektiert und der Regelkreis ist somit geschlossen.

Zur Quantifizierung der Prozessberuhigung wurde ein zweiter Werkzeughalter entwickelt, der eine starre Werkzeugaufnahme darstellt und ebenfalls die Möglichkeit zur Prozesszustandserfassung bietet. Dort sind ebenfalls Beschleunigungsaufnehmer und kontaktlose Datenübertragung appliziert. Mit dieser Aufnahme wurden die gleichen Prozessparameterwerte innerhalb der experimentellen Untersuchungen eingestellt. Somit gelten zwischen den Versuchsreihen gleiche Voraussetzungen zur Bestimmung des Ratterniveaus.

Bei beiden Versuchsreihen wurden die an den Messrechner übermittelten Daten ausgewertet. Bewertungsgrundlage waren dabei die direkten Signale der Sensoren in Volt, auf die Umrechnung in Meter pro Sekunde im Quadrat kann für den reinen Vergleich verzichtet werden. Die Prozesssituation wurde mit 10 kHz erfasst und in Paketen von 10 000 Werten pro Sensor und Sekunde an die Datenauswertungssoftware übermittelt. Auf Basis dieser Werte wird eine Fast-Fourier-Transformation zur Ermittlung der Anteile der Einzelfrequenzen am Gesamtsignal durchgeführt. Anhand des Ergebnisses dieser Frequenzanalyse lässt sich bestimmen, ob es sich um ein ratterfreies Signal (Rauschen) handelt oder ob Ratterpeaks bei einzelnen Frequenzen auszumachen sind.

Abmessungen des Bohrers bestimmen Eigenfrequenz

In Abhängigkeit von den Abmessungen des verwendeten Bohrwerkzeugs, die maßgeblich die Torsionseigenfrequenz bestimmen, kann der Frequenzbereich ermittelt werden, der von besonderem Interesse für die Erfassung der Ratterstärke ist. Durch die Berechnung der Fläche unterhalb dieser Ratterpeaks im Spektrum der verschiedenen Prozesse lassen sich diese miteinander vergleichen. Allerdings müssen die Werte noch normiert werden, weil verschiedene Vorschubgeschwindigkeiten für unterschiedliche Hauptzeiten sorgen.

Nach der Signalauswertung kann durch den Einsatz des adaptronischen Werkzeughalters eine Prozessregelung stattfinden. Idee dabei ist es, das Übertragungsverhalten des Halters zu verändern und somit das mechanische System zu variieren und die Eigenfrequenzen über Zuschalten dieses zusätzlichen Feder-Dämpfersystems so zu verschieben, dass der Prozess abklingt.

Drei Prozessstrategien wurden untersucht

Als erster Ansatz wurde eine simple Strategie zur Ratterverminderung angewandt. Sobald Rattern auftritt, wird die Stromstärke halbiert. Dieses Maß reicht jedoch immer noch aus, um prozesssicher das notwendige Drehmoment übertragen zu können. Sobald das Rattern abgeklungen war, wurde wieder auf den ursprünglichen Wert erhöht. Außer in der geregelten Variante wurde der adaptronische Werkzeughalter zusätzlich bei maximaler Stromstärke betrieben, um so das ungeregelte Dämpfungspotenzial erfassen zu können.

Nachfolgend werden somit die Ergebnisse für die drei vorgestellten Prozessstrategien gezeigt. Zunächst erfolgte die Einsatzqualifikation ausschließlich anhand eines Werkzeugtyps. Dieses Werkzeug wurde in dem vom Hersteller empfohlenen Parameterfeld (Tabelle) für den Werkstückwerkstoff 34CrNiMo6 (Werkstoffnummer 1.6582) eingesetzt.

Im Vergleich der Zeitreihen bei gleichen Schnittdaten und der Verwendung der Adaptronik kann gezeigt werden, dass der erste Ratterbereich, der sich nahezu direkt nach dem Anbohrvorgang anschließt, durch die Adaptronik vollkommen gedämpft wird. Darüber hinaus ist ersichtlich, dass auch der zweite Ratterbereich gegen Ende des Prozesses erheblich gedämpft werden kann.

Die größten Verbesserungen ließen sich mit ungeregelter Adaptronik (konstant höchste Stromstärke und somit maximal übertragbares Drehmoment) bei der Schnittdatenkombination vc = 70 m/min und f = 0,02 erzielen (Versuch 3). Dabei betrug die Verminderung des Ratterns 62%. Für die geregelte Adaptronik konnte die größte Verbesserung mit 55% weniger Rattern bei vc = 70 m/min und Vorschub f = 0,03 (Versuch 4) erreicht werden. Im Vergleich über die Schnittgeschwindigkeiten kann besonders bei vc = 50 m/min und vc = 70 m/min (gemittelt über alle Vorschübe) ein Vorteil durch die Adaptronik erzielt werden.

Bei Betrachtung der Ratterstärken, gemittelt über alle Schnittgeschwindigkeiten, fällt auf, dass besonders bei geringen Vorschüben eine erhebliche Beruhigung des Prozesses möglich ist. Ein Quervergleich liefert das Ergebnis, dass durch die Verwendung der geregelten Adaptronik der Prozess bei vc = 50 m/min und einem Vorschub von f = 0,05 stabiler verläuft als bei Verwendung mit starrer Werkzeugaufnahme und f = 0,03. Somit kann davon ausgegangen werden, dass sich durch die Verwendung der Adaptronik eine Effizienzsteigerung von in diesem Fall 67% erzielt werden kann, ohne negative Effekte wie Schneidenverschleiß und Abnahme der Bohrungsqualität hinnehmen zu müssen.

Adaptronik-Werkzeughalter dämpft das Rattern

Durch den Einsatz des adaptronischen Werkzeughalters kann das Auftreten von Rattern erheblich gedämpft werden, so dass signifikante Vorschubsteigerungen bei gleichbleibender Prozessstabilität möglich sind. Allerdings konnte nicht immer mit dem geregelten Ansatz die größte Prozessdämpfung erzielt werden, sondern teilweise waren mit dem ungeregelten Ansatz bessere Ergebnisse darstellbar. Dies weist auf ein großes Potenzial durch eine Verbesserung des Regelungsalgorithmus hin, der, wie bereits erwähnt, bisher einen einfachen Regelungsansatz enthält. Somit sollte es möglich sein, mit relativ wenig Aufwand noch deutlich bessere Ergebnisse zu erzielen. Es ist noch erhebliches Optimierungspotenzial vorhanden.

Media Contact

Dirk Biermann und Michael Kersti MM MaschinenMarkt

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Anlagenkonzepte für die Fertigung von Bipolarplatten, MEAs und Drucktanks

Grüner Wasserstoff zählt zu den Energieträgern der Zukunft. Um ihn in großen Mengen zu erzeugen, zu speichern und wieder in elektrische Energie zu wandeln, bedarf es effizienter und skalierbarer Fertigungsprozesse…

Ausfallsichere Dehnungssensoren ohne Stromverbrauch

Um die Sicherheit von Brücken, Kränen, Pipelines, Windrädern und vielem mehr zu überwachen, werden Dehnungssensoren benötigt. Eine grundlegend neue Technologie dafür haben Wissenschaftlerinnen und Wissenschaftler aus Bochum und Paderborn entwickelt….

Dauerlastfähige Wechselrichter

… ermöglichen deutliche Leistungssteigerung elektrischer Antriebe. Überhitzende Komponenten limitieren die Leistungsfähigkeit von Antriebssträngen bei Elektrofahrzeugen erheblich. Wechselrichtern fällt dabei eine große thermische Last zu, weshalb sie unter hohem Energieaufwand aktiv…

Partner & Förderer