Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Radial polarisierter Laserstrahl erhöht Präzision und Effizienz bei der Laser-Materialbearbeitung

30.07.2009
Unternehmen der Solarzellentechnik und Laserspezialisten aus dem Bereich des Feinschneidens haben sich im Kooperationsprojekt Komet zusammengeschlossen. Ziel ist es unter anderem, mithilfe eines neuen Laserkonzeptes den Durchsatz der Siliziumzellen um bis zu 50% zu erhöhen und die Qualität der Produkte zu verbessern, wie das Fraunhofer-Institut für Lasertechnik (ILT), Aachen, mitteilt.

Die Jahreskapazität von Solarzellen aus Foliensilizium liegt in Deutschland bei etwa 50 Mio. Wafern, laut Prognosen soll diese Zahl bis 2012 auf 500 Mio. Wafer steigen, so das ILT. Diese Entwicklung fordere von den Herstellern eine Ausweitung der Produktionskapazität bei höchsten Präzisionsansprüchen und gleichzeitiger wirtschaftlicher Effizienz.

Laserschneiden soll effizienter werden

Das Bundeswirtschaftsministerium hat deshalb das Verbundprojekt Komet gestartet. Der Name steht auch für das Projektziel: Entwickelt werden soll ein „Kompakter Festkörperlaser für effizienten Materialabtrag mit radial polarisiertem Licht“. Beteiligt sind den Angaben zufolge die Forschungseinrichtungen Laser-Laboratorium Göttingen LLG, das Fraunhofer-Institut für Lasertechnik ILT und der Informatiklehrstuhl der Universität Erlangen-Nürnberg sowie die Unternehmen Innolas GmbH, Wacker Schott Solar GmbH, Admedes Schuessler GmbH, Advanced Laser Separation International N.V., Las-Cad GmbH, FEE GmbH und Schumacher Elektromechanik GmbH.

Gemeinsam würden die Projektpartnerbis 2012 die Entwicklung eines modular aufgebauten Festkörperlasers zum Präzisionsschneiden und -bohren planen. Vom Laser würden eine deutlich verbesserte Strahlqualität und eine Steigerung der Schneideffizienz von bis zu 50% gefordert.

Eine entscheidende Rolle hinsichtlich Qualität und Effizienz bei der Lasermaterialbearbeitung spielt der Polarisationszustand des Lichtstrahls, also die Richtung der Schwingung seines elektrischen Feldes, heißt es. Von ihm hänge unter anderem auch seine Fokussierbarkeit ab.

Polarisierter Laserstrahl bietet bessere Ergebnisse beim Schneiden und Bohren

Bislang werde beim Feinschneiden sprödharter Materialien wie Silizium ein Laser mit zirkular polarisiertem Strahl eingesetzt. Seine Schnittqualität sei im Gegensatz zum linear polarisierten Strahl von der Schneidrichtung unabhängig. Der Einsatz des Laserstrahls mit zirkularer Polarisation ermögliche für die industrielle Anwendung Ergebnisse, die dem Stand der Technik entsprechen.

An dieser Stelle setze das Projekt Komet an: Um die Einkopplungseffizienz und die Fokussierbarkeit des Laserstrahls unter Beibehaltung der Richtungsunabhängigkeit zu steigern, planten die Projektpartner nun den Einsatz radial polarisierten Lichts. Ein radial polarisierter Laserstrahl weist laut Mitteilung eine um bis zu 30% verbesserte Absorption auf als der zirkular polarisierte Strahl. Einkopplungsverluste würden so vermindert. Die radial-symmetrische Polarisation führe zu einer wesentlich verbesserten Schnittqualität.

Solarzellen-Hersteller sollen von neuem Laser profitieren

Am Beispiel Solartechnik wird deutlich, welche konkreten Vorteile mit dem innovativen Konzept erreichbar sind, wie das Fraunhofer-Institut berichett. 200 µ dünne Siliziumzellen (Foliensilizium) werden derzeit mit einer Schnittfugenbreite von einigen 10 µ bearbeitet.

Durch den Einsatz eines Lasers mit radial polarisiertem Strahl lasse sich dieser Schneidprozess wirtschaftlich und qualitativ erheblich optimieren. Eine Beschleunigung des Schneidprozesses um bis zu 50% und eine entsprechende Erhöhung der Produktionskapazität könnten realisiert werden. Außerdem werde eine wesentlich höhere Schnittpräzision erzielt.

Polarisierter Laserstrahl fokussiert deutlich präziser

Unter optimalen Bedingungen ist der Fokusbereich des radial polarisierten Strahls um bis zu 60% kleiner als bei konventionell erhältlichen Lasern, heißt es. Die nutzbare Fläche des Bearbeitungsmaterials könne auf diese Weise maximiert werden. Auch für das Laser-Dicing von Siliziumwafern sei das neue System von Interesse.

In einem ersten Schritt entwickelt das federführende LLG einen externen Polarisator zur Erzeugung radial polarisierten Lichts, wie das Fraunhofer-ILT berichtet. In Vorversuchen würden die Forscher aus Göttingen gemeinsam mit der Universität Erlangen-Nürnberg den Polarisator hinsichtlich seiner Funktionsfähigkeit überprüfen und optimieren und diesen anschließend dem Fraunhofer-ILT für die Erprobung zur Verfügung stellen. In Aachen soll der Prototyp dann unter produktionsnahen Bedingungen mit der dort vorhandenen Anlagentechnik getestet werden.

„Mit dem radial polarisierten Laser werden wir in Zusammenarbeit mit unseren Projektpartnern aus der Industrie Schneidversuche an Werkstücken durchführen. Auf Basis unseres Know-hows und unserer Ausrüstung in der Messtechnik können wir die Bauteile anschließend qualifizieren und so die Brücke von der Forschung zum Endanwender schlagen.“, sagt Dr. Jens Schüttler, Projektleiter Komet am Fraunhofer-ILT.

Laser-Anwendung auch in der Medizintechnik

In einem weiteren Schritt plane das Konsortium die Bereitstellung eines leistungsfähigen, industriell einsetzbaren Festkörperlasers, der ohne externe Bauelemente radiale Polarisation erzeugt. Bei einer Wellenlänge von 1064 nm soll der Laser Ausgangsleistungen von einigen 100 mW (Master Oszillator) beziehungsweise von bis zu 30 W (Power Amplifier) emittieren. Ein weiteres Anwendungsgebiet des neuen Laserkonzeptes sei die Medizintechnik, insbesondere die präzise Bearbeitung von Stents.

Stéphane Itasse | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/trenntechnik/articles/223403/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Luftturbulenzen durch Flugzeuge bald beherrschbar
08.12.2017 | Universität Rostock

nachricht Ein MRT für Forscher im Maschinenbau
23.11.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanostrukturen steuern Wärmetransport: Bayreuther Forscher entdecken Verfahren zur Wärmeregulierung

Der Forschergruppe von Prof. Dr. Markus Retsch an der Universität Bayreuth ist es erstmals gelungen, die von der Temperatur abhängige Wärmeleitfähigkeit mit Hilfe von polymeren Materialien präzise zu steuern. In der Zeitschrift Science Advances werden diese fortschrittlichen, zunächst für Laboruntersuchungen hergestellten Funktionsmaterialien beschrieben. Die hiermit gewonnenen Erkenntnisse sind von großer Relevanz für die Entwicklung neuer Konzepte zur Wärmedämmung.

Von Schmetterlingsflügeln zu neuen Funktionsmaterialien

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Was für IT-Manager jetzt wichtig ist

14.12.2017 | Unternehmensmeldung

30 Baufritz-Läufer beim 25. Erkheimer Nikolaus-Straßenlauf

14.12.2017 | Unternehmensmeldung

Mit allen Sinnen! - Sensoren im Automobil

14.12.2017 | Veranstaltungsnachrichten