Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Piezohydraulik: Winzling mit viel Kraft

08.10.2014

Forscher von Siemens haben einen kleinen aber kraftvollen Piezohydrau­lik-Aktor entwickelt. Er ist nur ungefähr neun Zentimeter lang, kann aber mehr als 150 Newton Kraft ausüben - das entspricht der Gewichtskraft von 15 Kilogramm. Solche Aktoren dienen beispielsweise zum Bewegen von Ventilen oder Klappen und könnten in der Robotik verwendet werden.

Das Konzept kombiniert Piezomecha­nik mit Hydraulik: Eine elektrische Spannung erzeugt winzige Auslenkungen eines Piezokristalls und ein internes Hydrauliksystem integriert diese kleinen Bewegungen zu einem Hub von zwei Zentimetern auf.

Im Gegensatz zu rein elektromagnetischen Aktoren verlieren diese nicht an Effizienz, wenn sie sehr klein sind. Ein weiterer Vorteil des neuen Aktors besteht in der metallischen Kapselung: So ist alles Hydrauliköl im System enthalten und es braucht nur mit Strom, nicht aber mit Flüssigkeit versorgt zu werden. Zum anderen ist der Aktor geschützt gegen Einflüsse wie Staub, Feuchtigkeit oder Chemikalien. 

Piezoelektrische Kristalle dehnen sich in einer bestimmten Richtung aus, sobald man eine elektrische Spannung anlegt. Sie werden zum Beispiel als Antrieb für Einspritzventile von Verbrennungsmotoren eingesetzt. Einer ihrer Vorteile liegt in ihrer Dynamik, denn sie reagieren aufgrund ihrer hohen Steifigkeit fast trägheitsfrei. Herkömmliche hydraulische Systeme dagegen müssen die Hydraulikflüssigkeit im gesamten Leitungssystem mit einer zentralen Pumpe komprimieren, bevor sie eine mechanische Bewegung erzeugen. 

Der von der globalen Siemens Forschung Corporate Technology (CT) entwickelte piezohydraulische Aktor erreicht eine hohe Steifigkeit, weil er mit nur sechs Millilitern Hydrauliköl auskommt. Das gekapselte Hydrauliksystem besteht aus drei benachbarten metallischen Bälgen, die in axialer Richtung dehnbar und durch Rückschlagventile miteinander verbunden sind. Wird der Piezokristall angeregt, dehnt er sich in die mittlere Kammer aus, erzeugt dort Druck und öffnet so das Ventil zur benachbarten Kammer, an deren Vorderseite eine Abtriebsstange sitzt.

Das einströmende Öl dehnt den Balg leicht aus und die Abtriebsstange wird ausgelenkt. Einen Hub von insgesamt zwei Zentimetern erreichen die Entwickler mit einer patentierten Integrationslösung: Sie betreiben den Piezokristall mit einer hochfrequenten Sägezahnspannung und addieren so die schnellen kleinen Ausdehnungen zu einer gleichförmigen Bewegung der Abtriebsstange.

Das Konzept hat zwei Vorteile: Legt man die umgekehrten Spannungsform an, dreht sich die Pumprichtung und damit die Bewegung um. Außerdem hält der Aktor einen einmal eingestellten Hub stabil ein. Aktoren, die herkömmliche Getriebe zur Übersetzung verwenden, können zum Beispiel Vibrationen nicht auf Dauer standhalten. 

Das System ist eine Weiterentwicklung eines piezohydraulischen Aktors, den die CT für die Ventilsteuerung an großen Verbrennungsmaschinen wie zum Beispiel Gasturbinen realisiert hat. Mögliche weitere Anwendungen sehen die Entwickler unter anderem in der Robotik, in der Betätigung von Flugzeug-Flügelklappen oder in der Medizin- und Reinraumtechnik. (2014.10.1)

Dr. Norbert Aschenbrenner | Siemens InnovationNews
Weitere Informationen:
http://www.siemens.com/innovationnews

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics