Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Piezoaktoren machen Industrieroboter zum präzisen Bearbeitungssystem

06.05.2010
Dreidimensionale Ausgleichskinematik mit Piezoaktoren macht`s möglich: Industrieroboter wird zum präzisen Bearbeitungssystem

Zur genauen spanenden Bearbeitung werden normalerweise Werkzeugmaschinen oder Bearbeitungszentren eingesetzt. Hohe Kosten und die von ihrer Geometrie begrenzten Werkstückgrößen muss man dabei in Kauf nehmen.


Dreidimensionale Ausgleichskinematik für den Fräskopf. Die treibende Kraft sind Piezoaktoren (Foto: Fraunhofer IPA)

Deutlich günstiger und flexibler würde es, wenn man stattdessen mit Industrierobotern arbeiten könnte. Dies scheiterte bisher jedoch an deren Ungenauigkeit. Sie wird verursacht durch die lange serielle kinematische Kette mit nur geringer Steifigkeit. Jetzt gibt es einen anderen Ansatz. Dazu wurden keineswegs Roboter neu entwickelt, sondern serienmäßige Ausführungen mit einer externen Aktorik kombiniert und damit die absolute Genauigkeit erhöht.

Um mit einem Industrieroboter die für die spanende Bearbeitung notwendige Genauigkeit zur erreichen, wurde am Fraunhofer IPA eine separate Ausgleichsaktorik für den Fräskopf (Bild 1) entwickelt. Die an den Roboterfräsanlagen auftretenden Ungenauigkeiten werden online während der Bearbeitung gemessen und direkt dort wo sie auftreten durch die Ausgleichsaktorik in Echtzeit kompensiert (Bild 2). Die Vorteile des Verfahrens liegen auf der Hand: Das Bauteil wird nicht wie beim Bearbeiten mit CNC-Maschinen fest auf einem Tisch verspannt. Der Roboter greift es stattdessen und führt es während der Bearbeitung durch den Fräskopf. Für Handling und Bearbeitung ist damit nur eine Maschine erforderlich; die Investitionskosten sinken, die Flexibilität steigt und außerdem lässt sich eine solche Roboterlösung gut innerhalb von vollautomatischen Produktionsstraßen einsetzen.

Piezoaktoren und Festkörpergelenke
Die Ausgleichskinematik, die einschließlich der Aktorik und Mechanik am Fraunhofer IPA in Stuttgart entwickelt wurde, basiert auf Piezoaktoren (vgl. Kastentext 1) der in Karlsruhe ansässigen Firma Physik Instrumente (PI). Für diese Wahl sprachen gleich mehrere Gründe. Die Piezoaktoren (Bild 3) arbeiten verschleiß- und reibungsfrei sowie ohne Schlupf. Außerdem können sie mit bis zu 10 g beschleunigt werden und eignen sich für die hohen Frequenzen, die beim Kompensieren der Ungenauigkeiten in der Roboterbahn erforderlich sind.

Da Piezoaktoren prinzipbedingt nur mit kleinen Hüben arbeiten, wurden sie vom IPA mit Festkörpergelenken kombiniert. Auf diese Weise lassen sich in der beschriebenen Anwendung Wege bis zu 690 µm realisieren. Die Verfahrgenauigkeit der Kinematik in allen drei Achsen liegt dabei im Nanometerbereich. Die Festkörpergelenke zur Kraft- und Bewegungsübertragung arbeiten ebenfalls verschleißfrei und wartungsarm. Außerdem sind sie leichter, leiser, steifer, dynamischer und genauer als konventionelle Ausgleichsmechanismen. Piezoaktoren haben damit einmal mehr beweisen, dass sie die technische Weiterentwicklung vorantreiben. Durch die geregelte Roboterlösung erschließen sich der Fräsbearbeitung von Metallen und Kunststoffen neue Möglichkeiten.

Kastentext 1: Der Piezo-Effekt
Bereits Ende des 19. Jahrhunderts entdeckten Jacques und Pierre Curie, dass mechanischer Druck in Quarzkristallen elektrische Ladungen erzeugt. Sie nannten dieses Phänomen „Piezoeffekt“ nach dem griechischen Wort „Piezo“ für „Druck“ oder „Pressen“. Später stellten sie fest, dass elektrische Felder piezoelektrische Materialien verformen können. Man bezeichnet dies als den „inversen Piezoeffekt“. Während sich der direkte Piezoeffekt für Sensorikanwendungen nutzen lässt, bietet sich der inverse Piezoeffekt speziell für die Realisierung von Aktoren an. Piezoaktoren erreichen Stellwege bis zu etwa einem Millimeter bei Auflösungen bis hinunter in den Nanometerbereich bei hoher Dynamik mit Frequenzen bis zu mehreren Kilohertz. Da die Bewegung auf kristallinen Effekten beruht, gibt es keine rotierenden oder reibenden Teile; Piezoaktoren sind dadurch wartungs- und verschleißfrei, und da keine Schmierung notwendig ist, auch für Vakuum geeignet. Sie können große Lasten bewegen und bauen sehr kompakt.
Kastentext 2: Über PI
In den letzten vier Jahrzehnten hat sich PI mit Stammsitz in Karlsruhe zum führenden Hersteller von Nanopositioniertechnik entwickelt. Als privat geführtes Unternehmen mit gesundem Wachstum, über 500 Angestellten weltweit und einer flexiblen, vertikal integrierten Organisation, kann PI fast jede Anforderung aus dem Bereich innovativer Präzisions-Positioniertechnik erfüllen. Alle Schlüsseltechnologien werden im eigenen Haus entwickelt. Dadurch kann jede Phase vom Design bis hin zur Auslieferung kontrolliert werden: die Präzisionsmechanik und Elektronik ebenso wie die Positionssensorik und die Piezokeramiken bzw. -aktoren. Letztere werden bei der Tochterfirma PI Ceramic gefertigt. In allen wichtigen Märkten ist PI mit eigenen Vertriebs- und Serviceniederlassungen vertreten. Außerdem unterhält das Unternehmen Testausrüstungen für Nanometrologie auf drei Kontinenten. PI Shanghai und USA haben darüber hinaus Entwicklungs- und Fertigungsressourcen, die vor Ort eine schnelle Reaktion auf kundenspezifische Anforderungen ermöglichen.
Kastentext 3: Über Fraunhofer IPA
Das Fraunhofer-Institut für Produktionstechnik und Automatisierung (IPA) wurde 1959 gegründet und 1971 in die Fraunhofer-Gesellschaft aufgenommen. Innerhalb der aus 57 Instituten bestehenden Forschungsgesellschaft gehört es zu den größten Einzelinstituten und beschäftigt rund 200 Wissenschaftlerinnen und Wissenschaftler. Organisatorische und technologische Aufgabenstellungen insbesondere aus dem Produktionsbereich von Industrieunternehmen sind die Forschungs- und Entwicklungsschwerpunkte des Fraunhofer IPA). Dadurch soll die Wettbewerbsfähigkeit der Unternehmen gestärkt und die Arbeitsplatzsituation verbessert werden.

Dipl.-Phys. Birgit Schulze, Markt & Produkte bei Physik Instrumente (PI), Arnold Puzik, Fraunhofer Institut für Produktionstechnik und Automatisierung, Stuttgart

und Ellen-Christine Reiff, M.A., Redaktionsbüro Stutensee
Verwendung honorarfrei, Leseranfragen bitte direkt an Physik Instrumente (PI)
Text (pi1056) und Bilder im Internet: http://pool.rbsonline.de

Sandra Ebler | pool.rbsonline.de
Weitere Informationen:
http://www.pi.ws

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Luftturbulenzen durch Flugzeuge bald beherrschbar
08.12.2017 | Universität Rostock

nachricht Ein MRT für Forscher im Maschinenbau
23.11.2017 | Universität Rostock

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lange Speicherung photonischer Quantenbits für globale Teleportation

Wissenschaftler am Max-Planck-Institut für Quantenoptik erreichen mit neuer Speichertechnik für photonische Quantenbits Kohärenzzeiten, welche die weltweite...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Neue Einblicke in die Materie: Hochdruckforschung in Kombination mit NMR-Spektroskopie

Forschern der Universität Bayreuth und des Karlsruhe Institute of Technology (KIT) ist es erstmals gelungen, die magnetische Kernresonanzspektroskopie (NMR) in Experimenten anzuwenden, bei denen Materialproben unter sehr hohen Drücken – ähnlich denen im unteren Erdmantel – analysiert werden. Das in der Zeitschrift Science Advances vorgestellte Verfahren verspricht neue Erkenntnisse über Elementarteilchen, die sich unter hohen Drücken oft anders verhalten als unter Normalbedingungen. Es wird voraussichtlich technologische Innovationen fördern, aber auch neue Einblicke in das Erdinnere und die Erdgeschichte, insbesondere die Bedingungen für die Entstehung von Leben, ermöglichen.

Diamanten setzen Materie unter Hochdruck

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Materialinnovationen 2018 – Werkstoff- und Materialforschungskonferenz des BMBF

13.12.2017 | Veranstaltungen

Innovativer Wasserbau im 21. Jahrhundert

13.12.2017 | Veranstaltungen

Innovative Strategien zur Bekämpfung von parasitären Würmern

08.12.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Rest-Spannung trotz Megabeben

13.12.2017 | Geowissenschaften

Computermodell weist den Weg zu effektiven Kombinationstherapien bei Darmkrebs

13.12.2017 | Medizin Gesundheit

Winzige Weltenbummler: In Arktis und Antarktis leben die gleichen Bakterien

13.12.2017 | Geowissenschaften