Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Neues Steuerungskonzept ermöglicht die Kombination von Industrieroboter und mobilem Laserscanner

31.05.2011
Wissenschaftler der Hochschule Aschaffenburg haben gemeinsam mit den Projektpartnern Reis Robotics, Obernburg und RAYLASE AG, Weßling eine entscheidende Verbesserung im Bereich der Lasermaterialbearbeitung entwickelt.

Im Forschungsprojekt LARISSA wurden neuartige Steuerungskonzepte entwickelt, welche die Kombination und Koordination von Roboter und mobilem Laserscanner erlauben: Wo der Roboterarm an seine bewegungsdynamischen Grenzen stößt, wird nun die extrem hohe Beweglichkeit des Lasers genutzt. So lassen sich bei der Lasermaterialbearbeitung mit Industrierobotern deutlich höhere Geschwindigkeiten und eine verbesserte Genauigkeit erzielen.

Die robotergeführte Lasermaterialbearbeitung hat sich in vielen Bereichen der Industrie etabliert. Sie ermöglicht das detailgenaue Schneiden, Markieren und Schweißen von Werkstücken unterschiedlichster Materialien.

Mit der Entwicklung von immer leistungsfähigeren Laserstrahlquellen wird die erzielbare Geschwindigkeit bei der robotergeführten Lasermaterialbearbeitung zunehmend durch die mechanische Trägheit des Roboters begrenzt. Insbesondere bei abrupten Richtungs- und Geschwindigkeitsänderungen kann die von modernen Laserquellen zur Verfügung gestellte Leistung oftmals nicht vollständig ausgeschöpft werden, da die Dynamik des Robotersystems nicht ausreicht um den Laserstrahl mit der entsprechenden Geschwindigkeit über das zu bearbeitende Werkstück zu bewegen.

Ziel des auf zweieinhalb Jahre angelegten Forschungsprojekts LARISSA (Kurzform für: "LaserRobotik - Integration von Scan- und Fokussiereinheiten als hochdynamische System Achsen) war daher die Entwicklung und Erprobung neuartiger Steuerungs- und Regelungskonzepte, welche die Dynamik eines beweglichen Laserscanners (Strahlumlenkeinheit) mit dem großen Arbeitsraum eines Industrieroboters kombinieren. Bei dem nun entwickelten System wird der Laserstrahl durch eine vom Roboterarm mitgeführte Scannereinheit gezielt so abgelenkt, dass der Roboter nur relativ langsame und glatte Bewegungen ausführen muss und der Laserpunkt – trotzdem schnell und präzise der vorgegebenen Bearbeitungskontur folgt. So lassen sich bei der Lasermaterialbearbeitung mit Industrierobotern deutlich höhere Geschwindigkeiten erzielen, ohne das Abstriche bei der Genauigkeit hingenommen werden müssten.

Bei der Abschlusspräsentation zeigten die Projektpartner ihre Entwicklung an einem Praxisbeispiel. Das Werkstück – ein Teil der Rückenlehne eines Fahrzeugsitzes - wurde zunächst in konventioneller Art bearbeitet: 45 Sekunden braucht der massige Industrieroboter für das Abfahren der Schweißnaht. Deutlich schneller geschieht dies unter Einsatz des neuen Steuerungskonzeptes. Dabei werden kleinere Bewegungsabläufe und Richtungsänderungen nicht mehr vom Roboterarm ausgeführt, sondern direkt vom hochdynamischen Laserscanner übernommen. Die Bewegungsaufteilung und –koordination zwischen Roboter und Laser übernehmen dabei die im Projekt entwickelten Steuerungsalgorithmen. Die zuvor gezeigte Bearbeitungsaufgabe ist mit dem neu entwickelten Steuerungskonzept nun schon nach 15 Sekunden abgeschlossen – "und dies sogar mit einer besseren Bearbeitungsgenauigkeit", betont Markus Lotz, M. Eng., der als Wissenschaftlicher Mitarbeiter zum Projektteam der Hochschule gehört, nach der Vorführung.

Professor Bruhm freut sich über den erfolgreichen Projektabschluss und betont neben der Bedeutung von Forschungsprojekten für die industrielle Anwendung auch den Beitrag angewandter Forschung für die Ausbildung von Studierenden. „Bachelor- und Masterstudenten können so an aktuellen Fragestellungen der Technik mitwirken und profitieren von einem praxisorientierten wissenschaftlichen Umfeld.“ Die Bedeutung von Forschungskooperation hebt auch Professor Czinki nochmals hervor: "Der Technologietransfer findet nicht nur direkt statt, sondern auch indirekt durch die Ausbildung von besonders qualifiziertem Ingenieurnachwuchs." Auch Dr.-Ing. Eberhard Kroth, Geschäftsführer bei Reis Robotics lobt die Zusammenarbeit der Projektpartner und sieht gute Chancen für die Vermarktung des neuen Steuerungskonzepts. Die freie Programmierbarkeit ist ein weiterer Vorteil des neuen Systems: „Damit lassen sich auch sehr individuelle Lösungen realisieren“, so Kroth. Die vielfältigen Anwendungsmöglichkeiten erläutert Erwin Wagner, Mitglied der Geschäftsleitung bei der Raylase AG: "Der Laserscanner als Werkzeug für Industrieroboter kann beispielsweise in der Automobilindustrie und bei der Fertigung von Photovoltaik-Modulen eine wichtige Rolle spielen."

Das Forschungsprojekt wurde von der Bayerischen Forschungsstiftung mit 450.000 € gefördert. Von den Fördermitteln flossen 200.000 € an die Hochschule Aschaffenburg, welche die Projektleitung innehatte und die auf einem Patent der Hochschule beruhenden grundlegenden Steuerungsalgorithmen auf einem sogenannten Rapid Control Prototyping System implementierte und erprobte. Bei der RAYLASE AG wurde der Prototyp eines neuen Scanners für den Einsatz an Robotern entwickelt. Reis Robotics spezifizierte die Anforderungen an das zu entwickelnde Gesamtsystem, konzipierte und integrierte eigene Varianten der Steuerungsalgorithmen in die Robotersteuerung und übernahm die anwendungsnahe Erprobung. Dort ist das Thema mit dem Projektende noch lange nicht "abgehakt": Die Fa. Reis Robotics arbeitet nun an der serientauglichen Umsetzung des entwickelten Konzeptes in ihrer industriellen Robotersteuerung.

Simone Herzog | idw
Weitere Informationen:
http://www.h-ab.de/index.php?id=Larissa

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics