Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanowände für Smartphones

06.01.2016

Forschende der ETH Zürich stellten mit einem neuartigen Nano-Druckverfahren transparente Elektroden für den Einsatz in Touchscreens her. Die neuen Elektroden gehören zu den transparentesten und leitfähigsten, die je entwickelt wurden.

Jeder Touchscreen, wie wir ihn unter anderem von Smartphones und der Bedienoberfläche von Ticketautomaten und Bancomaten kennen, braucht transparente Elektroden: Die Glasoberfläche der Geräte ist mit einem kaum sichtbaren Muster aus einem leitfähigen Material beschichtet. Dank diesem erkennen die Geräte, ob und wo genau ein Finger die Oberfläche berührt.


Mit einer speziellen Variante des sogenannten elektrohydrodynamisches Tintenstrahldrucks können Wissenschaftler ein Gitternetz aus sehr feinen Goldwänden drucken. (Illustration: Ben Newton / Digit Works)

Forschende unter der Leitung von Dimos Poulikakos, Professor für Thermodynamik, haben nun in einem 3D-Druckverfahren eine neue Art von transparenten Elektroden geschaffen. Es handelt sich dabei um ein Gitternetz aus «Nanowänden» aus Gold beziehungsweise Silber auf einer Glasoberfläche.

Die Wände sind so dünn, dass man sie mit blossem Auge kaum sehen kann. Es ist das erste Mal, dass Wissenschaftler solche Nanowände im 3D-Druck hergestellt haben. Die neuen Elektroden sind leitfähiger und transparenter als jene aus Indiumzinnoxid, die heute in Smartphones und Tablets standardmässig verwendet werden.

Dies ist ein klarer Vorteil: Je transparenter die Elektroden sind, desto besser ist die Bildschirmqualität. Und je leitfähiger sie sind, desto schneller und genauer kann der Touchscreen arbeiten.

Dritte Dimension

«Indiumzinnoxid wird verwendet, weil es als Material eine verhältnismässig hohe Transparenz hat und die Herstellung der Schichten gut erforscht ist, doch es ist nur mässig leitfähig», sagt Patrik Rohner, Doktorand in Poulikakos‘ Gruppe. Um leitfähigere Elektroden herzustellen, setzten die ETH-Forscher auf Gold und Silber, die Strom sehr viel besser leiten. Weil diese Metalle jedoch nicht transparent sind, mussten die Wissenschaftler die dritte Dimension zu Hilfe nehmen.

Denn: «Will man mit Drähten aus diesen Metallen gleichzeitig hohe Leitfähigkeit und Transparenz erreichen, besteht ein Zielkonflikt», erklärt ETH-Professor Poulikakos. «Mit zunehmenden Querschnitt von Gold- und Silberdrähten nimmt zwar die Leitfähigkeit zu, die Transparenz des Gitternetzes jedoch ab.»

Die Lösung waren bloss 80 bis 500 Nanometer dünne Metallwände, die von oben betrachtet kaum sichtbar sind. Weil ihre Höhe im Vergleich zur Breite zwei- bis viermal grösser ist, ist ihr Querschnitt und dadurch ihre Leitfähigkeit ausreichend hoch.

Tintenstrahldrucker mit winzigem Druckkopf

Die Forscher stellten diese winzigen Metallwände mit einem Druckverfahren her – Nanodrip genannt –, das Poulikakos und seine Mitarbeiter vor drei Jahren entwickelt haben (siehe ETH Life-Artikel vom 31.05.2013, http://www.ethlife.ethz.ch/archive_articles/130531_Scrona_aj). Dessen Grundprinzip ist der sogenannte elektrohydrodynamische Tintenstrahldruck. Dabei verwenden die Wissenschaftler Tinten aus Metallnanopartikeln in Lösungsmittel; ein elektrisches Feld zieht kleinste Tröpfchen der Metalltinte aus einer Glaskapillare. Das Lösungsmittels verdunstet schnell, und so kann Tropfen für Tropfen eine dreidimensionale Struktur aufgebaut werden.

Das Spezielle am Nanodrip-Verfahren ist, dass sich dabei Tröpfchen von der Glaskapillare ablösen, die etwa zehnmal kleiner sind als die Öffnung selbst. Damit lassen sich sehr viel kleinere Strukturen drucken. «Stellen Sie sich einen Wassertropfen vor, der unten an einem geschlossenen Wasserhahn hängt. Und stellen Sie sich nun vor, dass unten an diesem Tropfen noch ein winziges Tröpfchen hängt – nur diese winzigen Tröpfchen drucken wir», erklärt Poulikakos. Die spezielle Tropfenform erzielten die Forscher, indem sie die Zusammensetzung der Metalltinte und das verwendete elektromagnetische Feld optimal aufeinander abstimmten.

Kostengünstige Herstellung

Die nächste grosse Herausforderung werde nun sein, die Methode hochzuskalieren und den Druckprozess so weiterzuentwickeln, dass er industriell im grossen Massstab angewendet werden kann. Die Wissenschaftler arbeiten dazu mit Kollegen des ETH-Spin-offs Scrona zusammen.

Sie sind überzeugt: Gelingt das Hochskalieren, wird die Technologie gegenüber den existierenden Methoden eine Reihe von Vorteilen bringen. Insbesondere wird sie wohl kostengünstiger sein, weil für das Nanodrip-Verfahren im Gegensatz zur Herstellung von Indiumzinnoxid-Elektroden kein Reinraum nötig ist. Auch dürften die neuen Elektroden wegen ihrer höheren Leitfähigkeit besser geeignet sein für grosse Touchscreens. Und schliesslich sei ihr Verfahren auch das erste, bei dem man die Höhe der Nanowände direkt während des Druckens variieren könne, sagt ETH-Doktorand Rohner.
Eine mögliche zukünftige Anwendung könnten auch Solarzellen sein, für die ebenfalls transparente Elektroden benötigt werden. Je durchsichtiger diese sind, desto mehr Strom lässt sich gewinnen. Und die Elektroden könnten schliesslich auch bei der Weiterentwicklung von gebogenen Bildschirmen mit der OLED-Technologie zum Einsatz kommen.

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/01/nanowaende...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Das Auto lernt vorauszudenken
28.06.2017 | Technische Universität Wien

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physiker designen ultrascharfe Pulse

Quantenphysiker um Oriol Romero-Isart haben einen einfachen Aufbau entworfen, mit dem theoretisch beliebig stark fokussierte elektromagnetische Felder erzeugt werden können. Anwendung finden könnte das neue Verfahren zum Beispiel in der Mikroskopie oder für besonders empfindliche Sensoren.

Mikrowellen, Wärmestrahlung, Licht und Röntgenstrahlung sind Beispiele für elektromagnetische Wellen. Für viele Anwendungen ist es notwendig, diese Strahlung...

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Navigationssystem der Hirnzellen entschlüsselt

Das menschliche Gehirn besteht aus etwa hundert Milliarden Nervenzellen. Informationen zwischen ihnen werden über ein komplexes Netzwerk aus Nervenfasern übermittelt. Verdrahtet werden die meisten dieser Verbindungen vor der Geburt nach einem genetischen Bauplan, also ohne dass äußere Einflüsse eine Rolle spielen. Mehr darüber, wie das Navigationssystem funktioniert, das die Axone beim Wachstum leitet, haben jetzt Forscher des Karlsruher Instituts für Technologie (KIT) herausgefunden. Das berichten sie im Fachmagazin eLife.

Die Gesamtlänge des Nervenfasernetzes im Gehirn beträgt etwa 500.000 Kilometer, mehr als die Entfernung zwischen Erde und Mond. Damit es beim Verdrahten der...

Im Focus: Kohlenstoff-Nanoröhrchen verwandeln Strom in leuchtende Quasiteilchen

Starke Licht-Materie-Kopplung in diesen halbleitenden Röhrchen könnte zu elektrisch gepumpten Lasern führen

Auch durch Anregung mit Strom ist die Erzeugung von leuchtenden Quasiteilchen aus Licht und Materie in halbleitenden Kohlenstoff-Nanoröhrchen möglich....

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

10. Uelzener Forum: Demografischer Wandel und Digitalisierung

26.07.2017 | Veranstaltungen

Clash of Realities 2017: Anmeldung jetzt möglich. Internationale Konferenz an der TH Köln

26.07.2017 | Veranstaltungen

2. Spitzentreffen »Industrie 4.0 live«

25.07.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Basis für neue medikamentöse Therapie bei Demenz

27.07.2017 | Biowissenschaften Chemie

Aus Potenzial Erfolge machen: 30 Rittaler schließen Nachqualifizierung erfolgreich ab

27.07.2017 | Unternehmensmeldung

Biochemiker entschlüsseln Zusammenspiel von Enzym-Domänen während der Katalyse

27.07.2017 | Biowissenschaften Chemie