Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Nanowände für Smartphones

06.01.2016

Forschende der ETH Zürich stellten mit einem neuartigen Nano-Druckverfahren transparente Elektroden für den Einsatz in Touchscreens her. Die neuen Elektroden gehören zu den transparentesten und leitfähigsten, die je entwickelt wurden.

Jeder Touchscreen, wie wir ihn unter anderem von Smartphones und der Bedienoberfläche von Ticketautomaten und Bancomaten kennen, braucht transparente Elektroden: Die Glasoberfläche der Geräte ist mit einem kaum sichtbaren Muster aus einem leitfähigen Material beschichtet. Dank diesem erkennen die Geräte, ob und wo genau ein Finger die Oberfläche berührt.


Mit einer speziellen Variante des sogenannten elektrohydrodynamisches Tintenstrahldrucks können Wissenschaftler ein Gitternetz aus sehr feinen Goldwänden drucken. (Illustration: Ben Newton / Digit Works)

Forschende unter der Leitung von Dimos Poulikakos, Professor für Thermodynamik, haben nun in einem 3D-Druckverfahren eine neue Art von transparenten Elektroden geschaffen. Es handelt sich dabei um ein Gitternetz aus «Nanowänden» aus Gold beziehungsweise Silber auf einer Glasoberfläche.

Die Wände sind so dünn, dass man sie mit blossem Auge kaum sehen kann. Es ist das erste Mal, dass Wissenschaftler solche Nanowände im 3D-Druck hergestellt haben. Die neuen Elektroden sind leitfähiger und transparenter als jene aus Indiumzinnoxid, die heute in Smartphones und Tablets standardmässig verwendet werden.

Dies ist ein klarer Vorteil: Je transparenter die Elektroden sind, desto besser ist die Bildschirmqualität. Und je leitfähiger sie sind, desto schneller und genauer kann der Touchscreen arbeiten.

Dritte Dimension

«Indiumzinnoxid wird verwendet, weil es als Material eine verhältnismässig hohe Transparenz hat und die Herstellung der Schichten gut erforscht ist, doch es ist nur mässig leitfähig», sagt Patrik Rohner, Doktorand in Poulikakos‘ Gruppe. Um leitfähigere Elektroden herzustellen, setzten die ETH-Forscher auf Gold und Silber, die Strom sehr viel besser leiten. Weil diese Metalle jedoch nicht transparent sind, mussten die Wissenschaftler die dritte Dimension zu Hilfe nehmen.

Denn: «Will man mit Drähten aus diesen Metallen gleichzeitig hohe Leitfähigkeit und Transparenz erreichen, besteht ein Zielkonflikt», erklärt ETH-Professor Poulikakos. «Mit zunehmenden Querschnitt von Gold- und Silberdrähten nimmt zwar die Leitfähigkeit zu, die Transparenz des Gitternetzes jedoch ab.»

Die Lösung waren bloss 80 bis 500 Nanometer dünne Metallwände, die von oben betrachtet kaum sichtbar sind. Weil ihre Höhe im Vergleich zur Breite zwei- bis viermal grösser ist, ist ihr Querschnitt und dadurch ihre Leitfähigkeit ausreichend hoch.

Tintenstrahldrucker mit winzigem Druckkopf

Die Forscher stellten diese winzigen Metallwände mit einem Druckverfahren her – Nanodrip genannt –, das Poulikakos und seine Mitarbeiter vor drei Jahren entwickelt haben (siehe ETH Life-Artikel vom 31.05.2013, http://www.ethlife.ethz.ch/archive_articles/130531_Scrona_aj). Dessen Grundprinzip ist der sogenannte elektrohydrodynamische Tintenstrahldruck. Dabei verwenden die Wissenschaftler Tinten aus Metallnanopartikeln in Lösungsmittel; ein elektrisches Feld zieht kleinste Tröpfchen der Metalltinte aus einer Glaskapillare. Das Lösungsmittels verdunstet schnell, und so kann Tropfen für Tropfen eine dreidimensionale Struktur aufgebaut werden.

Das Spezielle am Nanodrip-Verfahren ist, dass sich dabei Tröpfchen von der Glaskapillare ablösen, die etwa zehnmal kleiner sind als die Öffnung selbst. Damit lassen sich sehr viel kleinere Strukturen drucken. «Stellen Sie sich einen Wassertropfen vor, der unten an einem geschlossenen Wasserhahn hängt. Und stellen Sie sich nun vor, dass unten an diesem Tropfen noch ein winziges Tröpfchen hängt – nur diese winzigen Tröpfchen drucken wir», erklärt Poulikakos. Die spezielle Tropfenform erzielten die Forscher, indem sie die Zusammensetzung der Metalltinte und das verwendete elektromagnetische Feld optimal aufeinander abstimmten.

Kostengünstige Herstellung

Die nächste grosse Herausforderung werde nun sein, die Methode hochzuskalieren und den Druckprozess so weiterzuentwickeln, dass er industriell im grossen Massstab angewendet werden kann. Die Wissenschaftler arbeiten dazu mit Kollegen des ETH-Spin-offs Scrona zusammen.

Sie sind überzeugt: Gelingt das Hochskalieren, wird die Technologie gegenüber den existierenden Methoden eine Reihe von Vorteilen bringen. Insbesondere wird sie wohl kostengünstiger sein, weil für das Nanodrip-Verfahren im Gegensatz zur Herstellung von Indiumzinnoxid-Elektroden kein Reinraum nötig ist. Auch dürften die neuen Elektroden wegen ihrer höheren Leitfähigkeit besser geeignet sein für grosse Touchscreens. Und schliesslich sei ihr Verfahren auch das erste, bei dem man die Höhe der Nanowände direkt während des Druckens variieren könne, sagt ETH-Doktorand Rohner.
Eine mögliche zukünftige Anwendung könnten auch Solarzellen sein, für die ebenfalls transparente Elektroden benötigt werden. Je durchsichtiger diese sind, desto mehr Strom lässt sich gewinnen. Und die Elektroden könnten schliesslich auch bei der Weiterentwicklung von gebogenen Bildschirmen mit der OLED-Technologie zum Einsatz kommen.

Weitere Informationen:

https://www.ethz.ch/de/news-und-veranstaltungen/eth-news/news/2016/01/nanowaende...

Fabio Bergamin | ETH Zürich

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungen

Internationale Konferenz zum Biomining ab Sonntag in Freiberg

22.09.2017 | Veranstaltungen

Die Erde und ihre Bestandteile im Fokus

21.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

11. BusinessForum21-Kongress „Aktives Schadenmanagement"

22.09.2017 | Veranstaltungsnachrichten

DFG bewilligt drei neue Forschergruppen und eine neue Klinische Forschergruppe

22.09.2017 | Förderungen Preise

Lebendiges Gewebe aus dem Drucker

22.09.2017 | Biowissenschaften Chemie