Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikroschaftfräser für anspruchsvolle Bearbeitungsaufgaben

22.08.2008
Die Verwendung von Schaftfräsern aus Hartmetall mit kleinsten Durchmessern, der so genannten Mikroschaftfräser, hat die Bewährungsprobe in der industriellen Praxis bestanden. Allerdings bergen die unterschiedlichen Bearbeitungsaufgaben Besonderheiten in sich. Die Auswahl eines Werkzeugs muss darauf abgestimmt sein.

Mikroschaftfräser, die durch die lineare Skalierung makroskopischer Werkzeuggeometrien in den Mikrobereich konstruiert wurden, sind nicht prozesssicher. Oft sind große Werkzeugbereiche nicht an der Spanbildung beteiligt. Es herrscht meist ein deutliches Missverhältnis zwischen der mit Schneiden präparierten effektiven Werkzeuglänge und der axialen Schnitttiefe. Gerade dieses Missverhältnis lässt die Belastungen für das Werkzeug bis zum Bruch ansteigen.

Vor diesem Hintergrund wurden qualitativ neuartige und Kosten sparende Mikroschaftfräser entwickelt. Der konstruktive Lösungsansatz beruht auf der Annahme, dass beim Mikroschaftfräser der Übergang vom Konus zum Schneidenteil eine runde Verjüngung ausbildet.

Diese Verjüngung verhindert einerseits den Kontakt des Werkzeugschaftes zum Werkstück und damit eine zusätzliche Belastung durch Reibkräfte. Andererseits ermöglicht der kreisförmige Querschnitt im hoch beanspruchten Bereich eine elastische Verformung des Mikroschaftfräsers ohne Kerbwirkungen.

Auf diese Weise wirken die Prozesskräfte an allen im Eingriff befindlichen Schneiden mit gleicher Größe. Plötzliche Veränderungen der Eingriffsbedingungen im Bearbeitungsprozess lassen sich so elastisch kompensieren. Die Länge des Schneidenteils ist werkstoffabhängig an eine optimale axiale Schnitttiefe zuzüglich eines Aufmaßes als Spielraum für Verschleiß anpassbar.

Alle Geometriemerkmale sind parametrisch verknüpft

Das Konzept für die Werkzeuggeometrie von Mikroschaftfräsern sieht eine parametrische Verknüpfung aller Geometriemerkmale vor. Auf diese Weise passen sich bei Veränderung eines Merkmals, wie beispielsweise des Werkzeugdurchmessers, alle anderen Merkmale automatisch mit an. Die Abhängigkeiten sind durch eine einfache mathematische Formel beschrieben, die patentrechtlich geschützt ist (Patent Nr. 10 2005 009 030).

Diese Funktionalität sichert die Generierung einer Werkzeuggeometrie, die die Anforderungen individueller Anwendungen erfüllt und eine optimale Stabilität aus mechanischer Sicht gewährleistet. Weiterhin wird es auf diesem Wege möglich, Bearbeitungsparameter und Strategieempfehlungen für eine prozesssichere Mikrofräsbearbeitung zu prognostizieren und dem Anwender für seine individuelle Bearbeitungsaufgabe zur Verfügung zu stellen. Diese Option lässt sich wiederum nutzen, um kalkulierbare Standzeiten und niedrigere Kosten durch einen geringeren Werkzeugbedarf zu erzielen.

Mikrofräser mit neuer Werkzeuggeometrie kommt auf 0,05 bis 2 mm Durchmesser

Der Werkzeugdurchmesser für Mikroschaftfräser mit der neuartigen Werkzeuggeometrie liegt vorzugsweise im Bereich zwischen 0,05 und 2 mm. Die effektive Werkzeuglänge liegt zwischen 0,1 und 20 mm, was Aspektverhältnissen l/D von 2 bis 10 entspricht. Der Ansatz ist bei Mikrostirnumfangsfräsern, Mikrotorusfräsern und Mikrostirnradiusfräsern umsetzbar.

Die Vorgehensweise bei der Optimierung von Mikroschaftfräsern lässt sich mühelos auf die heute etablierte Herstellung von Mikroschaftwerkzeugen durch Schleifen übertragen. Namhafte Werkzeughersteller haben das vorgestellte Konzept bereits unter industriellen Bedingungen geprüft und wirtschaftlich erfolgreich eingesetzt, Mikroschaftfräser mit optimierter Geometrie in das Produktionssortiment aufgenommen und auf den Markt gebracht.

Spannung im neuen Mikrofräser geringer als 50%

Für den technologischen Einsatz der Mikroschaftfräser nach diesem Konzept ergeben sich gleichsam zwei bemerkenswert positive Effekte. Zum einen ist bei gleicher Schnittkraft die maximal wirkende Spannung im Werkzeug im Vergleich zu herkömmlichen Mikroschaftfräsern geringer als 50%. Gleiches trifft auch für die Verformungen zu. Zum anderen sind die Prozessparameter wie Schnittgeschwindigkeiten, Vorschübe und Zustellungen beträchtlich höher wählbar.

Natürlich sind auch diesen Werkzeugen mechanische, allerdings berechenbare Grenzen gesetzt. Besteht beispielsweise die Aufgabe, einen gehärteten Werkzeugstahl mit Aspektverhältnis l/D > 10 komplex dreidimensional zu bearbeiten, wird dies nicht auf direktem Wege durch Mikrofräsen möglich sein.

Es ist aber kein Problem, die invertierte Struktur mit Aspektverhältnissen > 10 als Formelektrode aus zum Beispiel Graphit herzustellen. Dafür können wieder die parametrisch generierten Mikroschaftfräser zur Anwendung kommen. Der Übergangsbereich für diese Entscheidung ist ebenfalls berechenbar und kann dem Kunden in einer Beratung vermittelt werden. Über die Funkenerosion mit Formelektrode lässt sich dann die Bearbeitungsaufgabe wirtschaftlich attraktiv lösen.

Mikrofräser fräst auch gehärteten Werkzeugstahl mit 62 HRC

Für den Nachweis der Vorteile wurden Bearbeitungen eines gehärteten Werkzeugstahls mit 62 HRC durchgeführt. Die Bearbeitung eines solchen Stahles durch Fräsen mit diesen Aspektverhältnissen war bislang ausgeschlossen. Dabei konnten sogar im Vergleich zu Werkzeugstählen mit geringerer Härte die Schnittgeschwindigkeiten und Zahnvorschübe nahezu verdoppelt werden. Auf diese Weise ließ sich bei der Erzeugung einer Teststruktur die Bearbeitungszeit um 85% reduzieren.

Die optimierten Mikroschaftfräser erzielten fast um 30% höhere Standwege. Alle Versuchswerkzeuge beendeten die Bearbeitung ohne Bruch. Es wurden auch anspruchsvolle Testwerkstücke in hochlegierten Werkzeugstählen und in Elektrodenwerkstoffen prozesssicher hergestellt. Die kleinsten geometrischen Dimensionen betrugen wenige Hundertstel Millimeter.

Praxistest brachte den Beweis

Den erfolgreich verlaufenen technischen Untersuchungen schloss sich ein Praxistest an, der den Beweis erbracht hat, dass mit den optimierten Mikroschaftfräsern dreidimensionale Werkstücke aus hochlegierten Werkzeugstählen prozesssicher hergestellt werden können. Diese Technik ist gleichfalls hervorragend zur Fertigung von Mikroformelektroden aus klassischen Elektrodenwerkstoffen geeignet.

Das Turbinenrad hat einen Außendurchmesser von 4 mm, eine Breite von 1,2 mm und eine Schaufellänge von 1 mm. Die verwendeten Stirnradiusfräser hatten einen Durchmesser von 0,5 mm. Als Bearbeitungsparameter wurden eine Schnittgeschwindigkeit von 40 m/min und ein Zahnvorschub von 2 µm gewählt.

Eine Formelektrode eines Mikromischers wurde in Graphit gefertigt. Das mittlere Feld zählt 256 Dome mit einer Kantenlänge von 0,2 mm und einer Tiefe von 0,8 mm. Der kleinste eingesetzte Mikrostirnumfangsfräser hatte 0,2 mm Durchmesser. Die Spindeldrehzahl betrug 25 000 min-1. Bei Vollschnitt und einer axialen Schnitttiefe von 20 µm wurde eine Vorschubgeschwindigkeit von 1000 mm/min angewandt. Die Fertigung der Elektrode dauerte 45 min.

Dr.-Ing. Kai Schauer ist in der Entwicklungsabteilung der Berliner Glas KGaA Herbert Kubatz GmbH & Co KG tätig. Die Verwertungsrechte für die patentierte Werkzeuggeometrie liegen bei der Ipal Gesellschaft für Patentverwertung Berlin mbH, 10715 Berlin.

Kai Schauer | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/141408/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics