Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobauteile: Messen, was wirklich wichtig ist

06.06.2014

Bauteile von Handys, medizinischen Implantaten oder Mikromotoren im Auto werden immer kleiner und sollen gleichzeitig immer perfekter funktionieren.

Die mechanischen Eigenschaften von Mini-Funktionsbauteilen und Beschichtungen für Hochleistungswerkstoffe erfordern Werkstoffproben zwischen Haar- und Postkartendicke (15-500 µm). Sie sind jedoch bisher eine Black Box für viele Entwickler und Konstrukteure, die Aussagen zur Lebensdauer und zu Belastungsgrenzen in neuer Qualität benötigen.

Das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg schließt nun diese messtechnische Lücke und öffnet ein neues Fenster für die Leistungsfähigkeit und Funktionalität miniaturisierter Bauteile.

»Je kleiner das Bauteil und je kleiner die Werkstoffprobe, desto stärker wirken sich zum Beispiel richtungsabhängige Eigenschaften und Größeneffekte auf die Materialeigenschaften aus«, sagt Prof. Dr. Chris Eberl, Leiter der Gruppe »Mikromechanische Beanspruchungsanalyse« am Fraunhofer IWM.

Sein Team analysiert diese Effekte und überträgt inzwischen die bis ins Detail beherrschten Versuche aus der Makro- in die Mikrowelt – bei gleicher Qualität der Ergebnisse. Werkstoffdaten lokal und aus solch kleinen Proben zu gewinnen, ist weltweit einzigartig.

Doch warum sind solch winzigen Materialproben überhaupt nötig? Die Industrie setzt zunehmend auf lokale Materialoptimierungen, zum Beispiel spezielle Schutzschichten oder Funktionen von nanostrukturierten Oberflächen, die sie auf günstigere oder leichtere Materialien aufbringt. Zudem sollen die Ausfallraten von Bauteilen immer kleiner werden.

Diese Ziele werden nur erreicht, wenn die Mechanismen und Effekte in Werkstoffen und Systemen besser verstanden sind. In der Vergangenheit sind jedoch die experimentellen Möglichkeiten den immer filigraner werdenden Hochleistungssystemen hinterhergehinkt: »Oft war die Werkstoffprobe größer als das eigentliche Bauteil und wir konnten die lokalen Eigenschaften und Größeneffekte nicht richtig bewerten«, so Eberl.

Fenster für mehr Zuverlässigkeit geöffnet

Weil sich für sehr kleine Insekten die Luft etwa so verhält wie für uns Menschen das Wasser, haben sie keine Flügeltragflächen, sondern »schwimmen« mit dünnen Streben durch die Luft. Da sie so klein sind, kommen für sie andere physikalische Regeln zum Tragen als bei ihren größeren Verwandten. Ähnliches gilt auch für die immer kleiner werdenden Bauteile der Medizin-, Kommunikations- und Automobiltechnik: Die Werkstoffe, aus denen sie bestehen, reagieren auf Außeneinflüsse anders als sie das bei großen Bauteilen tun.

Obwohl die Werkstoffeigenschaften bei großen Bauteilen sehr exakt vorhersagbar sind, und obwohl berechenbar ist, wie sich die Atome und Moleküle eines bestimmten Werkstoffs bei Druck, Zug oder Torsion verhalten – die mechanischen Werkstoffeigenschaften auf der Mikroskala dazwischen konnten bisher nur anhand von Annahmen abgeschätzt werden. Auch wie sich spezielle Oberflächenbeschichtungen unter Belastung verhalten, war bisher nicht exakt zu messen. »Es war eher ein Blindflug – man wusste ‚es hält‘, aber nicht warum und wie lange wirklich«, erklärt Eberl.

Damit ist jetzt Schluss. Denn nun ist es möglich, die voraussichtliche Lebensdauer und das optimale Design von Kleinstformatbauteilen sowie Schutzschichten für Bauteile zu charakterisieren. Nun gibt es keine Abstriche mehr bei der Qualität der zu Grunde liegenden experimentellen Daten aufgrund unsauberer Messungen. Möglich macht dies ein Testlabor für die Mikro- und Mesoskala an Werkstoffproben, die beispielsweise ein paar Millimeter lang und nur dick wie ein Haar sind.

»Mit diesen Ergebnissen und den Simulationen, die wir im Haus bereit stellen, senken wir die Ausfallraten und können die Bauteile je nach ihrer Beanspruchung viel näher an ihre Leistungsgrenzen bringen», sagt Eberl. Denn ein Mikrodrucksensor im Automobil muss ganz andere Umgebungsbedingungen aushalten als die Ansteuerung in einem Herzschrittmacher. Oder ein Bauteil soll eine passgenaue Oberflächenfunktion erhalten: zum Beispiel wasserabweisend sein, bestimmte optische Eigenschaften zeigen oder sich in saurer Umgebung behaupten können.

Werkstoffeigenschaften messen im Testlabor für die Mikroskala

Eberls Team kann Fragen zur Mechanik von Bauteilen in der Größenordnung von einem Hundertstel Millimeter bis zu Zentimetern exakt beantworten. Die Wissenschaftlerinnen und Wissenschaftler bauen die benötigten Mikromess-Apparaturen je nach Fragestellung auf. Sie messen damit die elasto-plastischen Materialeigenschaften unter statischer und dynamischer Last, in unterschiedlichen Gas-Umgebungen und bei Bedarf bei Temperaturen zwischen -40 bis 1 000 °C. Mit dieser Hilfe kann die Industrie Minibauteile mit der gewünschten Funktion und Bauteile mit idealen Oberflächen herstellen, die länger leben als die der Konkurrenz.

Eberl will mit seiner jetzt übernommenen Professur am Institut für Mikrosystemtechnik der Universität Freiburg IMTEK die Grundlagen der mechanischen Eigenschaften kleiner Bauteile noch besser aufklären und die universitären Ergebnisse mit der anwendungsorientierten Forschung am Fraunhofer IWM verzahnen.

Weitere Informationen:

http://www.iwm.fraunhofer.de/geschaeftsfelder/prozess-und-werkstoffbewertung/mik... - Seite der Gruppe Mikromechanische Beanspruchungsanalyse

Thomas Götz | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flüssiger Wasserstoff im freien Fall
05.12.2016 | Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Elektronenautobahn im Kristall

Physiker der Universität Würzburg haben an einer bestimmten Form topologischer Isolatoren eine überraschende Entdeckung gemacht. Die Erklärung für den Effekt findet sich in der Struktur der verwendeten Materialien. Ihre Arbeit haben die Forscher jetzt in Science veröffentlicht.

Sie sind das derzeit „heißeste Eisen“ der Physik, wie die Neue Zürcher Zeitung schreibt: topologische Isolatoren. Ihre Bedeutung wurde erst vor wenigen Wochen...

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Rätsel um Mott-Isolatoren gelöst

Universelles Verhalten am Mott-Metall-Isolator-Übergang aufgedeckt

Die Ursache für den 1937 von Sir Nevill Francis Mott vorhergesagten Metall-Isolator-Übergang basiert auf der gegenseitigen Abstoßung der gleichnamig geladenen...

Im Focus: Poröse kristalline Materialien: TU Graz-Forscher zeigt Methode zum gezielten Wachstum

Mikroporöse Kristalle (MOFs) bergen große Potentiale für die funktionalen Materialien der Zukunft. Paolo Falcaro von der TU Graz et al zeigen in Nature Materials, wie man MOFs gezielt im großen Maßstab wachsen lässt.

„Metal-organic frameworks“ (MOFs) genannte poröse Kristalle bestehen aus metallischen Knotenpunkten mit organischen Molekülen als Verbindungselemente. Dank...

Im Focus: Gravitationswellen als Sensor für Dunkle Materie

Die mit der Entdeckung von Gravitationswellen entstandene neue Disziplin der Gravitationswellen-Astronomie bekommt eine weitere Aufgabe: die Suche nach Dunkler Materie. Diese könnte aus einem Bose-Einstein-Kondensat sehr leichter Teilchen bestehen. Wie Rechnungen zeigen, würden Gravitationswellen gebremst, wenn sie durch derartige Dunkle Materie laufen. Dies führt zu einer Verspätung von Gravitationswellen relativ zu Licht, die bereits mit den heutigen Detektoren messbar sein sollte.

Im Universum muss es gut fünfmal mehr unsichtbare als sichtbare Materie geben. Woraus diese Dunkle Materie besteht, ist immer noch unbekannt. Die...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Firmen- und Forschungsnetzwerk Munitect tagt am IOW

08.12.2016 | Veranstaltungen

NRW Nano-Konferenz in Münster

07.12.2016 | Veranstaltungen

Wie aus reinen Daten ein verständliches Bild entsteht

05.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Hochgenaue Versuchsstände für dynamisch belastete Komponenten – Workshop zeigt Potenzial auf

09.12.2016 | Seminare Workshops

Ein Nano-Kreisverkehr für Licht

09.12.2016 | Physik Astronomie

Pflanzlicher Wirkstoff lässt Wimpern wachsen

09.12.2016 | Biowissenschaften Chemie