Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Mikrobauteile: Messen, was wirklich wichtig ist

06.06.2014

Bauteile von Handys, medizinischen Implantaten oder Mikromotoren im Auto werden immer kleiner und sollen gleichzeitig immer perfekter funktionieren.

Die mechanischen Eigenschaften von Mini-Funktionsbauteilen und Beschichtungen für Hochleistungswerkstoffe erfordern Werkstoffproben zwischen Haar- und Postkartendicke (15-500 µm). Sie sind jedoch bisher eine Black Box für viele Entwickler und Konstrukteure, die Aussagen zur Lebensdauer und zu Belastungsgrenzen in neuer Qualität benötigen.

Das Fraunhofer-Institut für Werkstoffmechanik IWM in Freiburg schließt nun diese messtechnische Lücke und öffnet ein neues Fenster für die Leistungsfähigkeit und Funktionalität miniaturisierter Bauteile.

»Je kleiner das Bauteil und je kleiner die Werkstoffprobe, desto stärker wirken sich zum Beispiel richtungsabhängige Eigenschaften und Größeneffekte auf die Materialeigenschaften aus«, sagt Prof. Dr. Chris Eberl, Leiter der Gruppe »Mikromechanische Beanspruchungsanalyse« am Fraunhofer IWM.

Sein Team analysiert diese Effekte und überträgt inzwischen die bis ins Detail beherrschten Versuche aus der Makro- in die Mikrowelt – bei gleicher Qualität der Ergebnisse. Werkstoffdaten lokal und aus solch kleinen Proben zu gewinnen, ist weltweit einzigartig.

Doch warum sind solch winzigen Materialproben überhaupt nötig? Die Industrie setzt zunehmend auf lokale Materialoptimierungen, zum Beispiel spezielle Schutzschichten oder Funktionen von nanostrukturierten Oberflächen, die sie auf günstigere oder leichtere Materialien aufbringt. Zudem sollen die Ausfallraten von Bauteilen immer kleiner werden.

Diese Ziele werden nur erreicht, wenn die Mechanismen und Effekte in Werkstoffen und Systemen besser verstanden sind. In der Vergangenheit sind jedoch die experimentellen Möglichkeiten den immer filigraner werdenden Hochleistungssystemen hinterhergehinkt: »Oft war die Werkstoffprobe größer als das eigentliche Bauteil und wir konnten die lokalen Eigenschaften und Größeneffekte nicht richtig bewerten«, so Eberl.

Fenster für mehr Zuverlässigkeit geöffnet

Weil sich für sehr kleine Insekten die Luft etwa so verhält wie für uns Menschen das Wasser, haben sie keine Flügeltragflächen, sondern »schwimmen« mit dünnen Streben durch die Luft. Da sie so klein sind, kommen für sie andere physikalische Regeln zum Tragen als bei ihren größeren Verwandten. Ähnliches gilt auch für die immer kleiner werdenden Bauteile der Medizin-, Kommunikations- und Automobiltechnik: Die Werkstoffe, aus denen sie bestehen, reagieren auf Außeneinflüsse anders als sie das bei großen Bauteilen tun.

Obwohl die Werkstoffeigenschaften bei großen Bauteilen sehr exakt vorhersagbar sind, und obwohl berechenbar ist, wie sich die Atome und Moleküle eines bestimmten Werkstoffs bei Druck, Zug oder Torsion verhalten – die mechanischen Werkstoffeigenschaften auf der Mikroskala dazwischen konnten bisher nur anhand von Annahmen abgeschätzt werden. Auch wie sich spezielle Oberflächenbeschichtungen unter Belastung verhalten, war bisher nicht exakt zu messen. »Es war eher ein Blindflug – man wusste ‚es hält‘, aber nicht warum und wie lange wirklich«, erklärt Eberl.

Damit ist jetzt Schluss. Denn nun ist es möglich, die voraussichtliche Lebensdauer und das optimale Design von Kleinstformatbauteilen sowie Schutzschichten für Bauteile zu charakterisieren. Nun gibt es keine Abstriche mehr bei der Qualität der zu Grunde liegenden experimentellen Daten aufgrund unsauberer Messungen. Möglich macht dies ein Testlabor für die Mikro- und Mesoskala an Werkstoffproben, die beispielsweise ein paar Millimeter lang und nur dick wie ein Haar sind.

»Mit diesen Ergebnissen und den Simulationen, die wir im Haus bereit stellen, senken wir die Ausfallraten und können die Bauteile je nach ihrer Beanspruchung viel näher an ihre Leistungsgrenzen bringen», sagt Eberl. Denn ein Mikrodrucksensor im Automobil muss ganz andere Umgebungsbedingungen aushalten als die Ansteuerung in einem Herzschrittmacher. Oder ein Bauteil soll eine passgenaue Oberflächenfunktion erhalten: zum Beispiel wasserabweisend sein, bestimmte optische Eigenschaften zeigen oder sich in saurer Umgebung behaupten können.

Werkstoffeigenschaften messen im Testlabor für die Mikroskala

Eberls Team kann Fragen zur Mechanik von Bauteilen in der Größenordnung von einem Hundertstel Millimeter bis zu Zentimetern exakt beantworten. Die Wissenschaftlerinnen und Wissenschaftler bauen die benötigten Mikromess-Apparaturen je nach Fragestellung auf. Sie messen damit die elasto-plastischen Materialeigenschaften unter statischer und dynamischer Last, in unterschiedlichen Gas-Umgebungen und bei Bedarf bei Temperaturen zwischen -40 bis 1 000 °C. Mit dieser Hilfe kann die Industrie Minibauteile mit der gewünschten Funktion und Bauteile mit idealen Oberflächen herstellen, die länger leben als die der Konkurrenz.

Eberl will mit seiner jetzt übernommenen Professur am Institut für Mikrosystemtechnik der Universität Freiburg IMTEK die Grundlagen der mechanischen Eigenschaften kleiner Bauteile noch besser aufklären und die universitären Ergebnisse mit der anwendungsorientierten Forschung am Fraunhofer IWM verzahnen.

Weitere Informationen:

http://www.iwm.fraunhofer.de/geschaeftsfelder/prozess-und-werkstoffbewertung/mik... - Seite der Gruppe Mikromechanische Beanspruchungsanalyse

Thomas Götz | Fraunhofer-Institut

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau
28.04.2017 | Technische Universität Chemnitz

nachricht Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten
27.04.2017 | EMAG eldec Induction GmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie