Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Metalldrücken als Fertigungsverfahren für Druckbehälter und Medizintechnik

07.12.2009
Druckbehälter und Reaktionsgefäße für die Verfahrens- und Fluidtechnik bestehen meist aus Stahl und Edelstahl. Zu den wichtigsten Herstellungstechniken gehört das Metalldrücken. Das Verfahren punktet insbesondere bei kleineren Serien und mehreren Produktvarianten durch seine Wirtschaftlichkeit.

Wechselnde Druckbelastungen, hohe Temperaturen und aggressive Medien – Reaktionsgefäße und Druckbehälter für die Verfahrenstechnik und den Apparatebau sind in der Praxis oft extremen Anforderungen ausgesetzt. Sie sind daher meist als sicherheitsrelevante Anlagenteile eingestuft.

Je nach Einsatzgebiet und Medium müssen sie zudem hohe Standzeiten einhalten. Deshalb verwenden Anlagenbauer und -planer dafür Druckgefäße, die im Metalldrück-Verfahren hergestellt werden. Sowohl in der Chemie- und Biotechnik als auch in der Energie- und Lackiertechnik sind gedrückte Behälter heute unverzichtbar – sei es zur Verarbeitung lösemittelhaltiger Lacke, wässriger Flüssigkeiten, flüchtiger Gase oder als Ausgleichskessel im Heizungsbau.

Metalldrücken bietet hohe Festigkeiten und geringen Energieverbrauch

Das Metalldrücken gehört zu den Verfahren der Kaltumformung. Es ist daher ein überaus energiesparendes Formgebungsverfahren. Gleichzeitig lassen sich damit sehr hohe Festigkeiten erreichen.

Im Vergleich mit anderen Umformtechniken bietet das Metalldrücken zudem eine sehr hohe Wirtschaftlichkeit, da kein Aufwand für die Anfertigung komplexer Formwerkzeuge zu Buche schlägt. Aus diesem Grund empfiehlt sich das Verfahren insbesondere zur Fertigung kleinerer und mittlerer Serien.

Das Unternehmen Helmut Rübsamen beherrscht diese Methode der Umformtechnik. Der Zulieferer fertigt kleine und große Druckspeicher, Druckzylinder und Druckflaschen für zahlreiche Abnehmer, beispielsweise für Anlagenbauer in der Verfahrens- und Heiztechnik oder der Getränke- und Nahrungsmittelindustrie.

Metalldrücken ermöglicht Produktion hoch belastbarer Hohlkörper

Das Metalldrücken ermöglicht die Produktion nahtloser und hoch belastbarer Hohlkörper, die hohe Standzeiten erreichen. Da gedrückte Kessel und Behälter außerdem sehr dünnwandig ausgeführt werden können, besteht auch die Möglichkeit, gewichtsoptimierte Leichtbau-Lösungen zu realisieren.

Bei Rübsamen kommen für die Herstellung von Druckbehältern und Reaktionsgefäßen vollautomatische CNC-Metalldrückmaschinen zum Einsatz, in denen Bleche aus Stahl und Edelstahl oder Aluminium, Kupfer und Messing mit hoher Präzision in Form gebracht werden. Lackiert und poliert sowie mit Anschlüssen, Halterungen, Ventilen und Armaturen versehen, gehen die Behälter dann einbaufertig in die Montagelinien der Kunden.

Metalldrücken als Verfahren für nahtlose und sichere Druckkessel

Wenn der Druck im Kessel steigt, müssen sich Anlagenbauer und Anwender auf seine Belastbarkeit verlassen können. Druckbehälter, Ausgleichsgefäße, Verdichter und Flüssigkeitssammler in der Chemietechnik, der Klimatechnik und der Lackiertechnik müssen wechselnden Druckbelastungen widerstehen und müssen hohen Temperaturen und aggressiven Medien standhalten.

Außerdem sind hohe Standzeiten gefragt. Viele Hersteller verfahrens- und prozesstechnischer Anlagen setzen ihr Vertrauen daher in DIN-gerechte Druckbehälter aus Stahl und Edelstahl, die im Metalldrück-Verfahren gefertigt werden.

Die so gefertigten Druckbehälter sind meist als sicherheitsrelevante Anlagenteile im Einsatz – etwa bei der Verarbeitung lösemittelhaltiger Lacke, wässriger Flüssigkeiten oder flüchtiger Gase. Auch Druckzylinder und Druckflaschen für Abnehmer in der Getränke- und Lebensmittel-industrie gehören dazu.

Der konstruktive Pluspunkt des Metalldrückens liegt in der Tatsache, dass das Verfahren die Produktion sowohl nahtloser als auch hoch belastbarer Hohlkörper und Halbschalen ermöglicht. Blechformteile für die Medizintechnik unterliegen besonders hohen Anforderungen an Präzision und Oberflächengüte.

Metalldrücken ermöglicht hohe Oberflächenqualität für die Medizintechnik-Teile

Hinzu kommen extreme Ansprüche an Hygiene und Reinigungsfreundlichkeit. Deshalb sind im Metalldrücken hergestellte Edelstahl- oder Aluminiumteile auch in der Medizintechnik oft die erste Wahl.

Die meist rotationssymmetrischen Blechformteile bestehen aus Edelstahl, sind überaus dünnwandig ausgeführt und verfügen über nahtlose Oberflächen ohne Stöße und Verbindungsstellen. Die glatten Oberflächen der gedrückten Blechteile erleichtern deren sorgfältige Reinigung und Sterilisation.

Ronden werden durch Metalldrücken zu Medizintechnik-Bauteilen

Geometrischer Ausgangspunkt sind beim Metalldrücken vorgefertigte Ronden aus Edelstahl oder Aluminium. Diese werden eingespannt, gefettet und mit Hilfe von Drückschere und Drückstahl geformt und geglättet.

Auf den ersten Blick ist das ein einfaches Verfahren. Hochwertige Ergebnisse, wie sie die Medizintechnik benötigt, setzen jedoch Erfahrung und kontinuierliche Entwicklungsarbeit voraus.

Joachim Theiß ist Mitglied der Geschäftsleitung bei der Helmut Rübsamen GmbH & Co. KG in 56470 Bad Marienberg.

Joachim Theiß | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/umformtechnik/articles/242762/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Hochpräzise Verschaltung in der Hirnrinde

Es ist noch immer weitgehend unbekannt, wie die komplexen neuronalen Netzwerke im Gehirn aufgebaut sind. Insbesondere in der Hirnrinde der Säugetiere, wo Sehen, Denken und Orientierung berechnet werden, sind die Regeln, nach denen die Nervenzellen miteinander verschaltet sind, nur unzureichend erforscht. Wissenschaftler um Moritz Helmstaedter vom Max-Planck-Institut für Hirnforschung in Frankfurt am Main und Helene Schmidt vom Bernstein-Zentrum der Humboldt-Universität in Berlin haben nun in dem Teil der Großhirnrinde, der für die räumliche Orientierung zuständig ist, ein überraschend präzises Verschaltungsmuster der Nervenzellen entdeckt.

Wie die Forscher in Nature berichten (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005), haben die...

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungen

Hochschule Karlsruhe richtet internationale Konferenz mit Schwerpunkt Informatik aus

25.09.2017 | Veranstaltungen

Junge Physiologen Tagen in Jena

25.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Die Parkinson-Krankheit verstehen – und stoppen: aktuelle Fortschritte

25.09.2017 | Medizin Gesundheit

Neurorehabilitation nach Schlaganfall: Innovative Therapieansätze nutzen Plastizität des Gehirns

25.09.2017 | Medizin Gesundheit

Posterblitz und neue Planeten

25.09.2017 | Veranstaltungsnachrichten