Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das messende Maschinenelement: Wellenkupplung mit integrierter Drehmomentmessung

16.04.2013
Die drehmomentmessende Wellenkupplung ROBA®-DSM basiert auf der bewährten spielfreien Wellenkupplung ROBA®-DS.

Der Einsatzbereich dieser Drehmoment-Messkupplung reicht vom Prüfstandsbau über den Einsatz bei Serienmaschinen bis zum Condition Monitoring. Das System ermöglicht eine einfache Zustandsüberwachung von Maschinen und Anlagen. Mit den Daten aus der Kupplung lassen sich Maschinen optimal auslasten.


Die drehmomentmessende Wellenkupplung ROBA®-DSM basiert auf der spielfreien und robusten Wellenkupplung ROBA®-DS.

Messungen auf rotierenden Teilen erfordert die Übertragung von Energie auf das rotierende Teil und die Übertragung von Daten aus dem rotierenden Teil. Dazu gibt es verschiedene Systeme. In der Vergangenheit wurden Energie und Daten hauptsächlich induktiv übertragen. Dieses Prinzip hat einige Nachteile im Vergleich zur Funk-Datenübertragung der neuen ROBA®-DSM.

Sehr großer Nachteil der induktiven Systeme ist die geringe Distanz, über die Daten übertragen werden können. Sie arbeiten deshalb meistens mit „umschließenden“ Statoren, die teilweise auch gelagert sind.

Die Umschließung macht Montage und Austausch aufwändiger. Zudem muss die Montage genauer erfolgen, da die Abstände sehr gering sind. Weitere Nachteile sind geringere Toleranzen bei Vibrationen und Rundlauf. Gelagerte Systeme benötigen zudem zwingend eine Drehmomentstütze. Hier muss auch auf die Einbaulage geachtet werden, um Reibmomente des Lagers nicht mitzumessen. Systeme, die nicht gelagert sind, benötigen eine Montagehilfe, um Rotor und Stator zu zentrieren.

Die ROBA®-DSM benötigt keine Umfassung und damit nur geringen Bauraum. Der Stators lässt sich einfach an jeder beliebigen Stelle am Umfang montieren. Bei der Einstellung des Stators sind große Toleranzen in allen Richtungen zulässig. Die möglichen Abstände von bis zu 5 mm sind deutlich größer als bei umfassenden Systemen.

Ein weiterer gravierender Nachteil der induktiven Systeme ist bei analogen Ausführungen die meist geringe Bandbreite der Übertragung beziehungsweise die geringe Datenrate bei digitalen Varianten. Solche Systeme sind meist bis 1 kHz spezifiziert. Durch die Übertragung von Energie und Messdaten über einen Träger erfordern diese Systeme eine aufwändige Trennung der Signale.

Die neue drehmomentmessende ROBA®-DSM benutzt zwei komplett getrennte Wege für die Übertragung von Energie zum Rotor und die Übertragung von Daten zum Empfänger. Durch die hohe Bandbreite von bis zu 3,5kHz kann sie auch schnelle, dynamische Vorgänge sicher erfassen. Die Aufbereitung der Daten auf dem Rotor ermöglicht eine optimale Verstärkung und Offsetkompensation.

Auf dem Rotor befindet sich ein programmierbarer Verstärker, der über die Funkschnittstelle programmiert wird. Damit kann der Kunde auch nach dem Einbau direkt auf dem Rotor eine Offsetkompensation vorzunehmen. Darüber hinaus hat der Anwender die Möglichkeit, Adresskodierung und Funkkanal mit Hilfe einer Software einzustellen.

Weiterer Vorteil ist der Einsatz eines kodierten Funksystems im 2,4GHz ISM-Band. Der Betrieb ist in der EU durch Allgemeinzulassung erlaubnisfrei. In anderen Märkten ist das System auch einsetzbar, allerdings ist dafür eine zusätzliche Zulassungen nötig. Das System verwendet bis zu 80 Kanäle. Dadurch ist es problemlos möglich, mehrere Kupplungen in der gleichen Umgebung zu betreiben. Die Datenübertragung ist mit einer Adresse kodiert, so dass nur der entsprechende Empfänger das Signal aufnehmen und auswerten kann.

Am Empfänger kann über eine einfache Anzeige die Funktion der Funkverbindung kontrolliert werden. Da die Datenübertragung bidirektional erfolgt und jedes Paket quittiert wird, kann die Qualität der Funkverbindung überwacht werden. Störungen bei der Funkverbindung oder fehlenden Daten vom Sender werden vom Empfänger gemeldet. Durch die hohe Abtastrate und die schnelle Funkverbindung erreicht die ROBA®-DSM sehr gute Werte für Jitter (max. +/-68µs) und Delay ( typ. 2ms) , die bei digitalen Systemen meist wesentlich höher liegen.

Die ROBA®-DSM liefert wie Industrie Standard Systeme ein Ausgangssignal von +/-10V für das Drehmoment rechts/links, die als Eingangssignal für eine SPS verwendet werden können. Da aber immer mehr Steuerungs-Systeme auf PCs basieren, ist eine direkte Erfassung der digitalen Daten von Vorteil. Das neue System ROBA®-DSM bietet eine USB-Schnittstelle, über die die digitalen Messdaten auf jeden PC oder Laptop mit Standard-USB Schnittstelle eingelesen werden können. Es ist keine zusätzliche Hardware für die Messdatenerfassung nötig.

Damit kann sich der Bediener schnell einen Überblick über die aktuellen Leistungsdaten verschaffen. Zudem können auf einfache Weise Aufzeichnungen, auch über längere Zeiträume, durchgeführt werden. Die Auswertung der Daten kann dabei „Offline“ mit einsprechenden Programmen wie DIADEM oder auch EXCEL und anderen Tabellenkalkulationsprogrammen erfolgen. Zudem ist eine „Online“ Auswertung möglich, indem die Daten direkt, zum Beispiel mit LABVIEW, eingelesen und in Echtzeit verarbeitet werden.

Chr. Mayr GmbH + Co KG, Eichenstraße 1, 87665 Mauerstetten
Tel.: 08341/8040, Fax: 08341/804-421
E-Mail: info@mayr.com, www.mayr.com
Belegexemplar bitte an:
Hermann Bestle, Leiter Werbung
Tel. 08341/804-232, Fax 08341/804-49232
E-Mail: hermann.bestle@mayr.de

Hermann Bestle | Chr. Mayr GmbH + Co KG
Weitere Informationen:
http://www.mayr.com

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht LZH optimiert laserbasierte CFK-Nachbearbeitung für die Luftfahrtindustrie
24.11.2016 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie