Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Das Medizin-Labor in der Nussschale

14.04.2009
Der Siegeszug der Miniaturisierung macht auch vor der Medizintechnik nicht halt. Dank Mikrofluidik lassen sich Analyse-Laboratorien zu sogenannten Lab-on-a-Chip-Systemen „schrumpfen“. Dabei werden die Mikroelemente im CAD-System konstruiert und je nach Baugröße mit Verfahren wie Fräsen, Erodieren, Lasern und Heißprägen hergestellt.

Viele Wissenschaftler arbeiten daran, neue Verfahren zu entwickeln, mit denen Krankheiten wie Krebs früher diagnostiziert werden können. Dabei werden Ideen oft an Universitäten und Forschungsinstituten entwickelt und umgesetzt, die meist jedoch keinen direkten Marktzugang haben. Grundsätzlich gilt, dass ohne Beteiligung von Unternehmen an der Entwicklung die Voraussetzungen für ein anwendungsgeeignetes System nur sporadisch gegeben sind und die verwendeten, meist modernen Methoden bei den Anwendern nicht notwendigerweise etabliert sind.

Alle Laborabläufe automatisiert in einem System

Um diese Lücke zu schließen, ist es von Vorteil, automatisierte Systeme zu haben, die auch von Nicht-Spezialisten verwendet werden können. Eine Strategie dazu bilden die sogenannten mikroanalytischen Gesamtsysteme (Micro Total Analysis Systems, µTAS), die gesamte Laborabläufe automatisiert in einem System ablaufen lassen können.

Am Institut für Mikrotechnik in Mainz (IMM) werden solche Lab-on-a-Chip-Systeme (LoC) entwickelt. Im ersten Schritt wird ein beliebiges biochemisches Verfahren auf seine Kompatibilität zu LoC-Technologien analysiert. Dabei sind nicht nur die Volumina für die mikrotechnische Anwendung zu reduzieren, sondern auch Assay-Schritte zusammenzufassen, zu vereinfachen, die Stabilität der Reagenzien hinsichtlich Trocken- oder Nasslagerung zu überprüfen und teilweise sogar neue Lösungen zu finden. So sind zum Beispiel Zentrifugationsschritte durch andere Techniken zu ersetzen, die möglichst das gleiche Ergebnis liefern.

Sollen Partikel, Zellen oder Aggregate abgetrennt werden, so kann dies eventuell durch einen Filtrationsschritt realisiert werden. Zentrifugationsschritte bei der DNA-Aufreinigung können durch die Verwendung von magnetischen oder Silica-Partikeln ersetzt werden. Bereits in der Konzeptphase ist es dabei wichtig, fertigungstechnische Aspekte in die Entwicklungen mit einfließen zu lassen, so dass sich alle Komponenten später einfach herstellen lassen und letztlich ein marktfähiger Preis erreicht wird.

Alle Teilschritte werden getestet und verifiziert

Nach der ersten Konzeptionsphase ist es essenziell, dass alle Teilschritte getestet und verifiziert werden. Hier werden zum einen die neuen angepassten biochemischen Prozesse mit Hilfe von Standard-Laborgeräten makroskopisch etabliert und verifiziert, damit für die Arbeit mit den LoC eine verlässliche Referenz gegeben und sichergestellt ist, dass das Konzept von biochemischer Seite nicht neu gefasst werden muss. Zusätzlich werden auch verschiedene Materialien getestet, um von Anfang an das passende Prozess-kompatible Material für die endgültige Produktion und das Prototyping einzusetzen. Parallel dazu werden die einzelnen mikrofluidischen Elemente realisiert und getestet.

Konzipierte Elemente im CAD-System umsetzen

Im One-Week-to-Chip-Prozess werden die konzipierten Elemente im CAD-System umgesetzt, um sie dann über CAM-Techniken im Prototyping zu realisieren. Je nach Baugröße der einzelnen Elemente werden unterschiedliche Techniken eingesetzt und teilweise auch kombiniert. Bei Strukturgrößen bis zu 150 µm bieten sich konventionelle Frästechniken an. Durch die Verwendung kompakter CNC-Maschinen ist es möglich, in wenigen Stunden einen Satz von Chips herzustellen, die für die ersten Testreihen eingesetzt werden können. Werden die Strukturen kleiner, so bieten sich Laserbearbeitungsverfahren an.

Am IMM werden Strukturen bis zu einer Strukturbreite von 3 bis 5 µm durch diese Abtragungstechniken hergestellt. Ein Nachteil dieser Direktbearbeitungsverfahren ist häufig die hohe Oberflächenrauigkeit. Diese kann durch passende Prozessparameter und spezielle Werkzeuge wie Diamantfräser reduziert werden. Des Weiteren stehen auch Glättungsverfahren zur Verfügung, die Rauigkeiten unter 0,1 µm erreichen. Werden sehr niedrige Oberflächenrauigkeiten, beispielsweise 10 nm, benötigt oder wirken sich mögliche chemische Modifikationen durch die Laser- oder Oberflächenglättungsverfahren nachteilig aus, kann das Heißprägen eingesetzt werden.

Fräsen und Erodieren erzeugt sehr kleine Strukturen

Im Gegensatz zu den beiden Direktbearbeitungsverfahren muss für das Heißprägen zuerst ein Prägestempel hergestellt werden. Dieser kann zum einen durch Fräsen und Funkenerosion und gegebenenfalls einen nachgelagerten Polierschritt erzeugt werden. Durch das Wechselspiel der Fräs- und Erodiertechniken lassen sich sehr kleine Strukturen bis in den zweistelligen Mikrometerbereich herstellen. Zum anderen kommen auch Dünnschichttechniken zum Einsatz, vor allem dann, wenn Strukturen bis in den Nanometerbereich oder sehr geringe Oberflächenrauigkeiten gefragt sind. Ein Prozess, der am IMM zu hervorragenden Ergebnissen führte, war die Kombination von Siliziumätztechniken, wie dem Boschprozess, und Galvanik mit einer funkenerosiven Nachbereitung.

Die Oberflächen der strukturierten Polymerchips können schließlich aus der Gasphase durch Plasmabehandlungen, Aufdampfung oder Sputtern beschichtet werden, oder auch nass-chemisch, wobei man durch den Einsatz von Photochemie und ortsaufgelöster Belichtung auch eine kovalent gebundene strukturierte Beschichtung erreicht. Diese Oberflächenmodifikationen sind für analytische Chips oft essenziell, weil erst dadurch ein erfolgreicher Reaktionsablauf oder die Lagerfähigkeit der einzusetzenden Reagenzien sichergestellt werden kann.

Als nächstes ist der Chip entweder durch einen zweiten Chip oder durch Folien zu verschließen. Filter, Ventile, Elektroden für die Elektrochemie oder andere Komponenten werden an- beziehungsweise eingebracht. Eingesetzte Verbindungstechniken reichen von klassischen Klebetechniken und Klebefolien bis hin zum Ultraschall- und Laserschweißen. Insbesondere das Laserschweißen birgt eine hohe Attraktivität, weil es sehr schnell ist, keine zusätzliche Chemie benötigt und sehr gezielt eingesetzt werden kann. Am Ende eines solchen Prototypingprozesses stehen Chips, die in Laboraufbauten getestet werden können.

Nachdem die einzelnen Schritte und ihr Zusammenspiel auf einer Plattform etabliert wurden, kann das Verfahren in einen vollautomatischen Geräteprototyp überführt werden. Von Vorteil ist, wenn zu diesem Zeitpunkt auch eine spritzgegossene Version des Chips vorliegt, weil die Designs in ihrer Funktionalität direkt übertragen und die Zusammenbautechniken aus dem Prototyping weiter verwendet werden können. Zudem findet dann auch kein Materialwechsel mehr statt.

Chip ist dünnschichttechnisch hergestellt

Ein typisches Beispiel für solch eine Entwicklung einer medizintechnischen Anwendung am IMM ist ein System zur gentechnischen Analyse von zirkulierenden Tumorzellen aus Vollblut. Weil in diesem Fall nur ein bis zehn Zielzellen pro Milliliter Blut vorhanden sind, werden im ersten Schritt diese seltenen Krebszellen mit Hilfe von magnetischen Partikeln aus 7,5 Millilitern Blut isoliert und nach einigen Waschschritten zu einem magnetischen Sorter (IMEC) transportiert.

Dieser Sorter ist ein dünnschichttechnisch hergestellter Chip, der in die aus einem Thermoplasten bestehenden Chips eingebunden wird. Die isolierten Zellen werden gesammelt und die DNA freigesetzt. Danach werden DNA-Sequenzen zugegeben, welche spezifische Tumormarkersequenzen erkennen.

Da die Konzentrationen zu diesem Zeitpunkt noch gering sind, werden die markierten Sequenzen mit Hilfe der Polymerase-Ketten-Reaktion vervielfältigt, um im letzten Schritt mit einem elektrochemischen Sensorarray detektiert zu werden. Die genannten Beispiele machen deutlich, dass bei der Entwicklung mikrofluidischer Systeme, zum Beispiel für die medizintechnische Anwendung sehr unterschiedliches Wissen zusammenfließen muss.

Miniaturisierung setzt interdiszplinäres Entwicklerteam voraus

Um solche Entwicklungen durchzuführen, ist ein multidisziplinäres Team notwendig, das das biochemische Verfahren aufgreift und geeignete mikrofluidische Strukturen entwickelt. So können vorhandene Labormethoden oft nicht einfach 1:1 umgesetzt werden, da manche Prozesse nicht in mikrofluidische Strukturen transferiert werden können und wegen der Miniaturisierung sehr viel stärker auf die Oberflächenchemie geachtet werden muss.

Fertigungsfragen direkt von Anfang an zu beantworten und beispielsweise auch die vorläufigen Tests mit den endgültigen Materialien durchzuführen, erspart einem am Ende der Entwicklung die nochmalige Anpassung von Design und Assay. Durch den Einsatz schneller Prototyping-Technologien ist es möglich, Ideen zügig auszutesten und Fehler frühzeitig aufzudecken, was für die weitere Entwicklung eines so jungen und dynamischen Feldes wie der Mikrofluidik notwendig ist. Die Möglichkeit, auf die unterschiedlichen Fertigungstechniken zur Realisierung dieser Strukturen zuzugreifen sowie die Charakterisierung in eigenen Laboren durchzuführen, ist ebenso wichtig wie die theoretische Unterstützung durch eine Simulationsgruppe.

Dr. Klaus Stefan Drese ist wissenschaftlicher Direktor am Institut für Mikrotechnik Mainz GmbH; Dr. Marion Ritzi-Lehnert ist Abteilungsleiterin Fluidik und Simulation am selben Institut.

Klaus Stefan Drese und Marion Ri | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/182508/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Assistenzsysteme für die Blechumformung
28.07.2017 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Beschichtung lässt Muscheln abrutschen

18.08.2017 | Materialwissenschaften

Fettleber produziert Eiweiße, die andere Organe schädigen können

18.08.2017 | Biowissenschaften Chemie

Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

18.08.2017 | Geowissenschaften