Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Lastwagen als Saubermänner: Ingenieure der TU München entwickeln schadstoffarme Dieselmotoren

01.12.2009
Seit September gilt für alle neuen Automodelle die Abgasnorm Euro 5. Wissenschaftler der Technischen Universität München (TUM) haben einen Motor entwickelt, der schon jetzt die strengere Euro 6-Norm fast erfüllt: Ein Forscherteam um Prof. Georg Wachtmeister vom Lehrstuhl für Verbrennungskraftmaschinen konnte die Schadstoffmengen im Abgas auf kaum noch messbare Werte reduzieren.

Außerdem haben die Ingenieure der TUM eine Sonde entwickelt, mit der sie während der Verbrennung Proben aus der Brennkammer entnehmen können. So wollen die Wissenschaftler verstehen, wie genau Ruß entsteht und neue Methoden zur Abgasreinigung entwickeln.

In einer Halle des TUM-Lehrstuhls für Verbrennungsmotoren (LVK) riecht es kaum nach Abgasen, obwohl der zwei Tonnen schwere LVK-Forschungsmotor auf Hochtouren läuft. Der Motor ist Kernstück des Forschungsprojekts NEMo oder "Niedrigst-Emissions-LKW-Dieselmotor". Ziel der Wissenschaftler ist es, ihren Motor so zu konstruieren und einzustellen, dass er die Euro-6-Grenzwerte einhält, und das sogar ohne Katalysator.

Die Euro-6-Norm, die spätestens 2014 in Kraft treten soll, hat es in sich. Denn die Richtlinie schreibt Emissionswerte vor, die kaum noch messbar sind. Ein Dieselmotor zum Beispiel darf nur noch fünf Milligramm Rußpartikel und 80 Milligramm Stickoxide pro Kilometer ausstoßen - das ist nur noch ein Fünftel des Rußes und ein Viertel der Stickoxide, die die bis August gültigen Euro-4-Norm erlaubte und nochmals weniger als die Hälfte der Stickoxide, die die Euro 5-Norm toleriert.

Doch das Verringern der Abgaswerte ist schwierig, denn Stickoxide und Rußpartikel können nicht unabhängig voneinander reduziert werden.

Stickoxide entstehen dadurch, dass der Dieselkraftstoff im Brennraum des Motors an der Luft verbrannt wird. Luft ist ein Gemisch aus 21 Prozent Sauerstoff und 78 Prozent Stickstoff. Der Sauerstoff verbrennt den Dieselkraftstoff zu Kohlendioxid und Wasser. Diese Reaktion geschieht sehr schnell, und so entstehen im Brennraum hohe Temperaturen, bei denen der Sauerstoff beginnt, auch mit dem Stickstoff der Luft zu reagieren: Es bilden sich Stickoxide.

Moderne Dieselmotoren leiten daher einen Teil des Abgases, der zudem noch gekühlt wird, zusammen mit der Luft wieder in den Brennraum zurück. In dem Gemisch sorgen das Kohlendioxid und das Wasser des Abgases dafür, dass die Verbrennung langsamer abläuft und die Temperatur nicht so stark ansteigt. Die Folge: Es entstehen weniger Stickoxide - doch gleichzeitig mehr Ruß, weil in dem Abgas-Luftgemisch der Anteil an Sauerstoff geringer ist.

Hier setzte der erste Trick der TUM-Forscher an: Sie konstruierten den LVK-Forschungsmotor so, dass er das Luft-Abgasgemisch mit hohem Druck in den Brennraum presst. Der Turbolader des Motors komprimiert das Gemisch bis auf das Zehnfache des Atmosphärendrucks (gemessen in bar) - die Motoren von Serienfahrzeuge halten weniger als die Hälfte aus. Das auf diese Weise verdichtete Luft-Abgas-Gemisch enthält jetzt wieder genügend Sauerstoff, um den Dieselkraftstoff zu verbrennen.

Der zweite Trick der TUM-Ingenieure setzt an der Düse an, mit der der Dieselkraftstoff in die Brennkammer gespritzt wird: Sie zerstäubt den Kraftstoff in winzig kleine Tröpfchen, dass diese vollständig verbrennen können. Bei größeren Kraftstofftröpfchen, wie sie in herkömmlichen Düsen entstehen, verbrennt zuerst die äußerste Hülle an Kraftstoffmolekülen, wie bei einer Zwiebel, bei der die erste Schicht abgeschält wird. Die dabei entstehenden Abgase umhüllen den Kraftstofftropfen und schirmen ihn vom Sauerstoff ab. Mit jeder weiteren "Zwiebelhaut" aus Kraftstoffmolekülen, die in Flammen aufgeht, wird die Abgashülle immer dichter. Schließlich kann der Sauerstoff kaum noch mit dem Kraftstoff reagieren. Die Folge: Ruß entsteht.

Die Einspritzdüse des NEMo-Motors dagegen zerstäubt den Dieselkraftstoff mit einem Druck von mehr als 3.000 bar - normal sind höchstens 1800 bar - und erzeugt so einen Kraftstoffnebel, der sehr gut und praktisch rußfrei verbrennt - aber wiederum die Temperatur nach oben schnellen lässt. Eine verzwickte Sache, und das feine Ausbalancieren der drei Einstellungen von Abgasrückführung, Ladedruck und Einspritzdüse war äußerst knifflig.

Doch die Ingenieure am Lehrstuhl für Verbrennungskraftmaschinen der TUM sind auch mit dem Euro-6-Motor noch nicht zufrieden. Sie möchten herausfinden, wie denn genau Ruß entsteht in den Sekundenbruchteilen, in denen die Kraftstofftröpfchen verglühen. Einfach eine Sonde mitten in den Brennraum einzubauen, hätte den Verbrennungsvorgang gestört. Die Forscher konstruierten daher ein kleines Röhrchen, das blitzschnell in die Mitte des Brennraums geschossen wird. Gerade einmal eine Millisekunde benötigt das Gasentnahmeventil, um eine Probe zu aufzunehmen, dann verlässt sie den Brennraum wieder. Während nur einer Zündung können so dreizehn Proben gewonnen werden - beste Voraussetzungen, um das Wachstum von Rußpartikeln zu untersuchen und noch schadstoffärmere Motoren zu entwickeln.

Kontakt:
Technische Universität München
Lehrstuhl für Verbrennungskraftmaschinen (Prof. Georg Wachtmeister)
Dipl.-Ing. Sebastian Pflaum
Tel. 089-289-24108
pflaum@lvk.mw.tum.de

Dr. Ulrich Marsch | idw
Weitere Informationen:
http://mediatum2.ub.tum.de/node?cunfold=824703&dir=824703&id=824703
http://portal.mytum.de/welcome

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht LZH optimiert laserbasierte CFK-Nachbearbeitung für die Luftfahrtindustrie
24.11.2016 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie