Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Laserauftragschweißen zur Reparatur von Innenkonturen

07.01.2010
Das Laserauftragschweißen ermöglicht die Beschichtung schwer zugänglicher Oberflächen. Basis dafür ist ein Bearbeitungskopf, mit dem zum Beispiel Innenkonturen enger Bohrungen beschichtet werden können. Das erhöht die Attraktivität des Verfahrens, insbesondere bei Reparaturarbeiten.

Über 50 Jahre Erfahrung in der Entwicklung von Applikationsverfahren für technische oder dekorative Oberflächen qualifizieren Pallas als Spezialist für anspruchsvolle Aufgaben. Aus einer Hand bietet der Dienstleister das gesamte Verfahrensspektrum: Galvanik, thermische Beschichtung, Antihaft- und Kunststoffbeschichtung sowie Laserbearbeitung.

Die Summe aus Expertenwissen und Bearbeitungstechniken fließt in eine interdisziplinäre Bearbeitung der Aufgaben ein. Auf dieser Basis entstehen Innovationen zur Erzeugung maßgeschneiderter Oberflächen für mechanisch stark beanspruchte Werkzeuge oder Bauteile. Ziel ist eine schnelle und kostengünstige Reparatur, die eine zeitaufwändige und teuere Herstellung neuer Werkzeuge oder Ersatzteile überflüssig macht.

Schon lange sucht die Industrie nach Verfahren zur Reparatur und Beschichtung schwer zugänglicher Bauteile, beispielsweise im Motor-, Maschinen- und Werkzeugbau. Insbesondere die Wiederbeschichtung von Innenkonturen bereitet Schwierigkeiten.

Innenbeschichtung von Bohrungen ab 26 mm Durchmesser

Die Lösung ist eine Bearbeitungsoptik (iClad) für das Laserauftragschweißen. Sie wurde von Pallas in Zusammenarbeit mit dem Fraunhofer-Institut für Lasertechnik (ILT), Aachen, entwickelt. Aufgrund der kompakten Bauweise ermöglicht diese Spezialoptik erstmals, Bohrungen ab 26 mm Durchmesser bis zu einer Tiefe von 500 mm zu beschichten. Auch Sackbohrungen können damit bis in die Kante beschichtet, legiert oder gehärtet werden.

Zum Vergleich: Konventionelle Standardbearbeitungsköpfe benötigen einen Öffnungsdurchmesser der Innenkontur von mindestens 100 mm.

Am Fraunhofer ILT hat man die notwendigen Verfahrensparameter für den Beschichtungsprozess erarbeitet. Pallas definiert die Designvorgaben für Optik, Art der Laserquelle, Strahlengang und Geometrie. Auch die Fertigung des Bearbeitungskopfs, die Applikationstests, die Implementierung und der After-Sales-Service werden vom Fachbetrieb für Oberflächentechnik übernommen. Ziel dieser Aufgabenteilung ist es, am Markt eine Komplettlösung anzubieten – inklusive der Innenbeschichtung als Dienstleistung.

Verschiedene Bearbeitungsköpfe für unterschiedliche Lochgrößen

Der Bearbeitungskopf ist für Innenkonturen ausgelegt, deren Durchmesser gerade einmal so groß wie eine 2-Euro-Münze sein können. Pallas fertigt die dazu erforderliche Bearbeitungsoptik für unterschiedliche Laserquellen. So ist eine Ankopplung nicht nur an die am weitesten verbreiteten Laser wie Dioden- oder Nd:YAG-Laser möglich, sondern auch an Faser- oder Scheibenlaser. Die Laserleistung kann bis zu 3 kW betragen.

Der Bearbeitungskopf wird entweder als feststehendes oder als rotierendes Element hergestellt. Während des Beschichtens von Innenkonturen liegt der Abstand zwischen Kopf und Bauteil bei 5 bis 8 mm. Trotz der kompakten Bauweise ist als Option die Anbindung einer Kamera zur Justierung oder Prozessbeobachtung möglich.

Stephan Kalawrytinos ist Geschäftsführer der Pallas GmbH & Co. KG in 52146 Würselen.

Stephan Kalawrytinos | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/244827/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Vorstoß ins Innere der Atome

Mit Hilfe einer neuen Lasertechnologie haben es Physiker vom Labor für Attosekundenphysik der LMU und des MPQ geschafft, Attosekunden-Lichtblitze mit hoher Intensität und Photonenenergie zu produzieren. Damit konnten sie erstmals die Interaktion mehrere Photonen in einem Attosekundenpuls mit Elektronen aus einer inneren atomaren Schale beobachten konnten.

Wer die ultraschnelle Bewegung von Elektronen in inneren atomaren Schalen beobachten möchte, der benötigt ultrakurze und intensive Lichtblitze bei genügend...

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

Eine Gruppe von Forschern um Andrea Cavalleri am Max-Planck-Institut für Struktur und Dynamik der Materie (MPSD) in Hamburg hat eine Methode demonstriert, die es erlaubt die interatomaren Kräfte eines Festkörpers detailliert auszumessen. Ihr Artikel Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, nun online in Nature veröffentlich, erläutert, wie Terahertz-Laserpulse die Atome eines Festkörpers zu extrem hohen Auslenkungen treiben können.

Die zeitaufgelöste Messung der sehr unkonventionellen atomaren Bewegungen, die einer Anregung mit extrem starken Lichtpulsen folgen, ermöglichte es der...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Verlässliche Quantencomputer entwickeln

Internationalem Forschungsteam gelingt wichtiger Schritt auf dem Weg zur Lösung von Zertifizierungsproblemen

Quantencomputer sollen künftig algorithmische Probleme lösen, die selbst die größten klassischen Superrechner überfordern. Doch wie lässt sich prüfen, dass der...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Von festen Körpern und Philosophen

23.02.2018 | Veranstaltungen

Spannungsfeld Elektromobilität

23.02.2018 | Veranstaltungen

DFG unterstützt Kongresse und Tagungen - April 2018

21.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Vorstoß ins Innere der Atome

23.02.2018 | Physik Astronomie

Wirt oder Gast? Proteomik gibt neue Aufschlüsse über Reaktion von Rifforganismen auf Umweltstress

23.02.2018 | Biowissenschaften Chemie

Wie Zellen unterschiedlich auf Stress reagieren

23.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics