Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Laser macht Solarenergie effizienter

23.11.2009
Laser trifft Solarzelle: Die einen Lichtstrahlen sorgen in der Fertigung dafür, dass die anderen wirtschaftlicher genutzt werden können. Mit seiner Möglichkeit, haarfeine Leiterbahnen, hauchdünne Schichten und mikrometergenaue Bohrungen zu erzeugen, hat sich der Laser als Werkzeug mittlerweile zu einer Schlüsseltechnik in der Photovoltaikindustrie entwickelt.

Sie bohren, trennen, strukturieren und löten — Laser erfüllen in der Fertigung von Solarzellen und -modulen vielfältige Aufgaben. Damit sind sie auch dort zu einer Schlüsseltechnik geworden, um die Herstellkosten zu reduzieren und den Wirkungsgrad zu steigern.

Laser-Forschungsprojekte für die Solarindustrie

Die Erreichung dieser beiden Ziele verfolgt auch das vom Fraunhofer-Institut für Lasertechnik ILT koordinierte Forschungs- und Entwicklungsprojekt Solasys (Next Generation Solar Cell and Module Laser Processing Systems). Das von der Europäischen Union mit 6 Mio. Euro geförderte Projekt startete am 1. September 2008 und läuft 36 Monate.

Ein Konsortium bestehend aus zehn Unternehmen und Instituten ist an Solasys beteiligt. „Wir arbeiten an neuen Verfahren, die das Dotieren der Halbleiter, das Bohren und die Oberflächenstrukturierung von Silizium sowie das Verlöten der Module wirtschaftlicher machen“, erklärt Projekt-Koordinator Dr. Arnold Gillner, Leiter der Abteilung Mikrotechnik am ILT. Erreicht werden sollen so Prozesszeiten von einer Sekunde pro Zelle.

Laser bietet zahlreiche Vorteile

Der Laser bietet als Werkzeug für die Materialbearbeitung zahlreiche Vorteile wie die Berührungslosigkeit der Bearbeitung, den kontrollierten Energieeintrag, die hohe Geschwindigkeit und die Genauigkeit. Das Verbundprojekt Solasys zielt auf die Verbesserung aktueller Verfahren und die Integration neuer Prozesse in die industrielle Produktion ab. Dabei geht es konkret um fünf Prozesse:

-Hochgeschwindigkeitsbohren von mikroskopisch kleinen Durchführungen,

-Entfernen von dünnen Beschichtungen ohne Beschädigung des Substrats,

-Laserlöten der Zellverbindungen,

-Laserisolation von Vorder- und Rückseite sowie

-laserselektives Dotieren.

Das Laserbohren ermöglicht beispielsweise einen Wirkungsgrad von etwa 20% bei sogenannten Emitter-wrap-through-Zellen, ein Drittel mehr als bei klassischen Siliziumzellen. Bei diesem Konzept werden die metallischen Kontakte der Zellenvorderseite durch Bohrungen mit dem Durchmesser eines menschlichen Haares auf die Rückseite geführt.

Damit wird das Ziel verfolgt, die Abschattung durch die Kontakte auf der Vorderseite zu verringern und die Effizienz der Zellen zu erhöhen. Zudem vereinfacht sich die Zellkontaktierung, weil die beiden elektrischen Pole auf der Rückseite liegen.

Je schneller die Löcher gebohrt werden können, desto besser. Eine Versuchsanlage beim ILT schafft bereits 3000 Bohrungen pro Sekunde. Sie hat eine Spiegelkonstruktion, die den Laserstrahl auf die gewünschten Punkte fokussiert, ohne dass die Lichtquelle bewegt werden muss. „Wir experimentieren mit unterschiedlichen Laserquellen und Optiken“, berichtet Gillner. „Unser Ziel ist es, die Leistung auf 10000 bis 20000 Löcher pro Sekunde zu steigern.“

Thermische Belastung der Zellen reduzieren

Für die Verbindung mehrerer Zellen zu einem Modul kommt das Laserlöten zum Einsatz. Die Solarzellen werden hintereinandergereiht und durch kleine metallische Bändchen zum sogenannten Stringer miteinander verbunden. Das Lötzinn, in das das Bändchen gehüllt ist, wird aufgeschmolzen, indem man mit dem Laserstrahl über das vorverzinnte Bändchen scannt.

Eine Infrarot-Wärmekamera misst die Temperatur des Siliziums und des Bändchens in Echtzeit über die abgegebene Wärmestrahlung. Ist die Temperatur zu hoch oder zu niedrig, passt ein Regelkreis die Leistung des Lasers innerhalb einiger Millisekunden automatisch an. So wird laut ILT die thermische Belastung der Zelle reduziert und eine hohe Qualität der Lötstelle gewährleistet.

Laserschweißen soll Solarzellen schneller und zuverlässiger verbinden

In Zukunft wollen die Forscher die Solarzellen noch schneller und zuverlässiger miteinander verbinden: mit dem Laserschweißen. „Im Unterschied zum Löten schmilzt man dabei nicht das Lötzinn, sondern das Bändchen selbst an“, sagt Abteilungsleiter Gillner.

Dafür muss es weiter erhitzt werden als beim Löten, aber nur für sehr kurze Zeit. „Daher wird trotz der höheren Temperatur weniger Energie auf die Materialien übertragen und es entstehen noch weniger thermisch bedingte Defekte“, erklärt der Experte.

Reis Robotics hat Anlagen zum Laserlöten realisiert

Bereits einige Anlagen zum Laserstrahllöten realisiert hat Reis Robotics. Mit einem neu entwickelten Laserlötverfahren will das Unternehmen die Qualität weiter steigern, die Zykluszeiten verkürzen und die manuelle Nacharbeit verringern.

Dabei erfolgt durch den konzentrierten Eintrag der Wärme das Verlöten der Quer- mit den Zell-Verbindern direkt auf dem Layup, bestehend aus Glas und EVA-Folie. Ein mehrfaches Handeln der Strings im Vorprozess wird so vermieden.

Als weiteren Vorteil nennt das Unternehmen die integrierte Prozesskontrolle. Sie überwacht die einzelnen Lötungen und mittels Datenübertragung können diese einzeln in einer Datenbank für die spätere Dokumentation und Qualitätskontrolle gesichert werden. Ebenfalls werden Fehllötungen auf einem Monitor am nachgeschalteten Arbeitsplatz direkt angezeigt, so dass ein Werker diese gleich erkennt und dann manuell nachlöten kann.

Laser mit ultrakurzen Pulsen zum Abtragen

Neue Fertigungsverfahren ermöglichen Laser mit ultrakurzen Pulsen, mit denen Material ohne nennenswerte Erwärmung abgetragen werden kann. Die anwendungsorientierten Mikrobearbeitungslaser der Tru-Micro-Baureihe bietet Trumpf mit einer mittleren Leistung zwischen 8 und 750 W und Pulsdauern vom Piko- bis in den Mikrosekundenbereich an.

Ein Applikationsbeispiel ist das Randentschichten. Um Solarmodule vor Korrosion zu schützen, wird das Schichtsystem am Rand auf einer Breite von etwa 1 cm entfernt und in der Regel laminiert.

Der Tru-Micro 7050 kann solche Formate im Produktionstakt zuverlässig und sicher bearbeiten. Er erzeugt Pulse mit einer Dauer von 30 ns bei einer mittleren Leistung von 750 W.

Trumpf sieht Laser als Schlüsseltechnologie für die Solartechnik

Bei Trumpf beurteilt man den Einsatz von Lasern in der Photovoltaikindustrie mittlerweile als eine Schlüsseltechnologie. „Wir rechnen in den nächsten Jahren mit einem dreistelligen Wachstum bei Lasern in der Photovoltaikproduktion“, urteilt Dr. Kurt Mann, Leiter des internationalen Vertriebs für Laserstrahlquellen bei Trumpf Laser.

Das Werkzeug Laser arbeite schnell, präzise, berührungsfrei, energie- und kosteneffizient und trage damit entscheidend zur Senkung der Produktionskosten bei. „Deshalb sind unser Engagement und Portfolio für die Photovoltaikbranche in den letzten Jahren stark gewachsen“, so Mann weiter. „Entsprechend breit ist unser Angebot, mit dem wir die Anstrengungen unterstützen, Solarzellen und Module kostengünstiger und mit höherem Wirkungsgrad für den sich weiter entwickelnden Massenmarkt zu produzieren.“

Rüdiger Kroh | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/verbindungstechnik/articles/239766/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht IPH entwickelt Prüfstand für angetriebene Tragrollen
29.11.2016 | IPH - Institut für Integrierte Produktion Hannover gGmbH

nachricht LZH optimiert laserbasierte CFK-Nachbearbeitung für die Luftfahrtindustrie
24.11.2016 | Laser Zentrum Hannover e.V.

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Greifswalder Forscher dringen mit superauflösendem Mikroskop in zellulären Mikrokosmos ein

Das Institut für Anatomie und Zellbiologie weiht am Montag, 05.12.2016, mit einem wissenschaftlichen Symposium das erste Superresolution-Mikroskop in Greifswald ein. Das Forschungsmikroskop wurde von der Deutschen Forschungsgemeinschaft (DFG) und dem Land Mecklenburg-Vorpommern finanziert. Nun können die Greifswalder Wissenschaftler Strukturen bis zu einer Größe von einigen Millionstel Millimetern mittels Laserlicht sichtbar machen.

Weit über hundert Jahre lang galt die von Ernst Abbe 1873 publizierte Theorie zur Auflösungsgrenze von Lichtmikroskopen als ein in Stein gemeißeltes Gesetz....

Im Focus: Durchbruch in der Diabetesforschung: Pankreaszellen produzieren Insulin durch Malariamedikament

Artemisinine, eine zugelassene Wirkstoffgruppe gegen Malaria, wandelt Glukagon-produzierende Alpha-Zellen der Bauchspeicheldrüse (Pankreas) in insulinproduzierende Zellen um – genau die Zellen, die bei Typ-1-Diabetes geschädigt sind. Das haben Forscher des CeMM Forschungszentrum für Molekulare Medizin der Österreichischen Akademie der Wissenschaften im Rahmen einer internationalen Zusammenarbeit mit modernsten Einzelzell-Analysen herausgefunden. Ihre bahnbrechenden Ergebnisse werden in Cell publiziert und liefern eine vielversprechende Grundlage für neue Therapien gegen Typ-1 Diabetes.

Seit einigen Jahren hatten sich Forscher an diesem Kunstgriff versucht, der eine simple und elegante Heilung des Typ-1 Diabetes versprach: Die vom eigenen...

Im Focus: Makromoleküle: Mit Licht zu Präzisionspolymeren

Chemikern am Karlsruher Institut für Technologie (KIT) ist es gelungen, den Aufbau von Präzisionspolymeren durch lichtgetriebene chemische Reaktionen gezielt zu steuern. Das Verfahren ermöglicht die genaue, geplante Platzierung der Kettengliedern, den Monomeren, entlang von Polymerketten einheitlicher Länge. Die präzise aufgebauten Makromoleküle bilden festgelegte Eigenschaften aus und eignen sich möglicherweise als Informationsspeicher oder synthetische Biomoleküle. Über die neuartige Synthesereaktion berichten die Wissenschaftler nun in der Open Access Publikation Nature Communications. (DOI: 10.1038/NCOMMS13672)

Chemische Reaktionen lassen sich durch Einwirken von Licht bei Zimmertemperatur auslösen. Die Forscher am KIT nutzen diesen Effekt, um unter Licht die...

Im Focus: Neuer Sensor: Was im Inneren von Schneelawinen vor sich geht

Ein neuer Radarsensor erlaubt Einblicke in die inneren Vorgänge von Schneelawinen. Entwickelt haben ihn Ingenieure der Ruhr-Universität Bochum (RUB) um Dr. Christoph Baer und Timo Jaeschke gemeinsam mit Kollegen aus Innsbruck und Davos. Das Messsystem ist bereits an einem Testhang im Wallis installiert, wo das Schweizer Institut für Schnee- und Lawinenforschung im Winter 2016/17 Messungen damit durchführen möchte.

Die erhobenen Daten sollen in Simulationen einfließen, die das komplexe Geschehen im Inneren von Lawinen detailliert nachbilden. „Was genau passiert, wenn sich...

Im Focus: Neuer Rekord an BESSY II: 10 Millionen Ionen erstmals bis auf 7,4 Kelvin gekühlt

Magnetische Grundzustände von Nickel2-Ionen spektroskopisch ermittelt

Ein internationales Team aus Deutschland, Schweden und Japan hat einen neuen Temperaturrekord für sogenannte Quadrupol-Ionenfallen erreicht, in denen...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von „Coopetition“ bis „Digitale Union“ – Die Fertigungsindustrien im digitalen Wandel

02.12.2016 | Veranstaltungen

Experten diskutieren Perspektiven schrumpfender Regionen

01.12.2016 | Veranstaltungen

Die Perspektiven der Genom-Editierung in der Landwirtschaft

01.12.2016 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parkinson-Krankheit und Dystonien: DFG-Forschergruppe eingerichtet

02.12.2016 | Förderungen Preise

Smart Data Transformation – Surfing the Big Wave

02.12.2016 | Studien Analysen

Nach der Befruchtung übernimmt die Eizelle die Führungsrolle

02.12.2016 | Biowissenschaften Chemie