Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Der Laser – ein elementarer Bestandteil der Umformtechnik

17.11.2009
Längst ist der Laser in Blechbearbeitung und Umformtechnik etabliert. Laserfügen, Lasertrennen, Oberflächenbearbeitung oder Lasermarkieren sind nur einige wenige Anwendungsbereiche, in denen ohne das „gebündelte Licht“ fast nichts mehr geht. Doch scheint das Feld der Laser-Anwendungen noch lange nicht vollständig beackert zu sein.

Die Werkstoffwelt in der Blechbearbeitung hat sich gewandelt. Den Forderungen nach Leichtbau kommen fast schon standardmäßig hochfeste Stähle, Titan, Magnesium oder Aluminium zur Anwendung. Dieser Wandel fordert auch ein Umdenken bei den Fertigungsprozessen, dort aber vor allem im Bereich der Umformung. Dabei spielt die Warmumformung eine gewichtige Rolle. Doch welche Wärmequelle würde sich für eine gezielte und effiziente Erwärmung der Bauteile besser eignen als der Laser? Diesen Vorteil scheinen die Laserverfahren derzeit voll auszuspielen.

Gerade in der Automobilindustrie wird gewichtsmäßig das meiste Blech verarbeitet und dafür werden zunehmend hochfeste Stähle zur Reduzierung des Fahrzeuggewichts oder zur Verbesserung des Chrash-Verhaltens eingesetzt. Die Umformbarkeit dieser Stähle ist jedoch, je nach Festigkeit, stark eingeschränkt. Mit Kaltumformung sind deshalb kaum brauchbare Ergebnisse zu erzielen.

Lokale Wärmebehandlung mit dem Laser entfestigt Platinen vor dem Umformprozess

In diesem Zusammenhang berichtet das Fraunhofer-Institut Lasertechnik (ILT) in Aachen von einem Forschungsprojekt bei dem vorgegebene Bereiche von Platinen durch eine lokale Wärmebehandlung mit dem Laserstrahl vor dem Umformprozess entfestigt wurden. Dabei wurden in Abhängigkeit von der Behandlungstemperatur sogenannte Anlasseffekte und Phasenumwandlungen erzielt die, in Zugversuchen ermittelt, eine deutliche Verminderung der Dehngrenze zeigten.

Im praktischen Zugversuch führte dies beim tiefziehen einer wärmebehandelten Platine aus MS-W 1200 zu einer Reduzierung der Umformkraft um zirka 20%. Erste Erfolge wiesen die Aachener Forscher auch bei der Umformung einer Automobil-B-Säule aus verzinktem DP 600 nach. Dort konnten das Formänderungsvermögen gesteigert und gleichzeitig Risse am Bauteil vermieden werden.

Das Fraunhofer-Institut Lasertechnik befasst sich auch mit weiteren Untersuchungen der Laserunterstützung im Stanz- und Umformbereich. Auch hier wurde wieder nachgewiesen, dass bereits kleine Vorwärmtemperaturen zu einer Abnahme der Formänderungsfestigkeit im Werkstoff führen und so zu einem Maximum an Umformgrad beitragen. „Der Einsatz von Laserstrahlung als Wärmequelle ermöglicht eine vergleichsweise schnelle Erwärmung des Materials“, sagt ILT-Leiter Prof. Dr. Reinhart Poprawe. Demnach können durch geeignete Strahlformung gezielt lokale einzelne Bereiche des Materials erwärmt werden. Die gute Regelbarkeit der Laserleistung ermöglicht exakt einstellbare Temperaturen im Material auch, wenn sich die Umgebungsbedingungen ändern sollten.

ILT favorisiert fasergeführte Laser-Systeme

Als Strahlquellen favorisieren die Aachener vor allem fasergeführte Systeme, die eine flexible Adaption an das Werkzeug ermöglichen. Dabei wäre auch eine direkte Integration von beispielsweise Laserdioden in das Werkzeug möglich. Optische Elemente formen dabei die Strahlung und führen sie durch die Werkzeugmatrize beziehungsweise durch transparente Werkzeugeinsätze aus Saphir direkt in das Werkzeug.

Mit Hochleistungsdiodenlasern arbeitet auch Dipl.-Ing. Michael Emonts vom Fraunhofer-Institut Produktionstechnologie (IPT), das ebenfalls in Aachen angesiedelt ist. Er befasst sich seit einiger Zeit mit der Verfahrens- und Systementwicklung des lasergestützten Scherschneidens. Motivation ist auch hier die Erweiterung der Verfahrensgrenzen bei gleichzeitiger Steigerung der Bearbeitungsqualität im Vergleich zum konventionellen Stanzen.

Fließvermögen des Blechwerkstoffs wird im Bereich der Scherzone gesteigert

„Dabei überlagert das laserunterstürzte Scherschneiden das konventionelle Scherschneiden mit einer lokalen, laserinduzierten Entfestigung des zu stanzenden Blechwerkstücks“, erläutert Emonts und meint: „Dadurch wird das Fließvermögen des Blechwerkstoffs gezielt im Bereich der Scherzone derart gesteigert, so dass der Glattschnittanteil vergrößert und die Schneidkräfte reduziert werden. Eine Verminderung gilt auch für den Schnittschlag und die Geräuschemissionen.“

So beruht das Verfahrensprinzip des laserunterstützten Scherschneidens auf einer gezielten und kurzzeitigen Werkstofferwärmung durch lokale Absorption von Laserenergie auf der Blechunterseite kurzzeitig vor dem Werkzeugeingriff des Schneidstempels auf der Blechoberseite. Die Untersuchungen des laserunterstützten Scherschneidens wurde mit einer handelsüblichen Stanz-Nibbel-Maschine mit 280 kN Stanzkraft des Herstellers Boschert aus Lörrach durchgeführt. Mittlerweile macht die Scheuermann + Heilig GmbH in Buchen als industrieller Pilotanwender seine ersten Erfahrungen mit dem laserunterstützten Scherschneidverfahren.

Auch spröde Werkstoffe mit dem Laser biegen

Auch vor dem Biegen noch so spröder Werkstoffe macht der Laser nicht halt. Denn zusammen mit der TU Wien hat der Ditzinger Werkzeugmaschinenbauer Trumpf ein einzigartiges Verfahren entwickelt, das bisher nicht umformbare, spröde Materialien wie Magnesium-, Aluminium- oder Titan-Legierungen bearbeitbar macht – das laserunterstütztes Gesenkbiegen.

Spröde Werkstoffen wie hochfeste Stähle, Aluminium, Titan, Magnesium oder Wolfram brechen wegen der Dehnung an der Außenseite des Biegewinkels schon bei geringer Zubiegung. Wird das Bauteil jedoch erwärmt, typischerweise auf 150 bis 300 °C, lässt sich das verhindern. Denn auf diese Weise steigt bei zahlreichen Materialien die Bruchdehnung um ein Vielfaches.

Selektives Erwärmen der Biegelinie ist völlig ausreichend

„Bei Versuchen in der Vergangenheit wurden Werkstücke im Ofen oder durch direkte Flammen erwärmt, was allerdings zeitintensiv war und leicht die Oberflächen beschädigte“, berichtet Prof. Dieter Schuöcker, Leiter des Instituts für Fertigungs- und Hochleistungslasertechnik an der TU Wien. „Zudem ist ein selektives Erwärmen der Biegelinie völlig ausreichend. Im Gegensatz zu Plasma- oder Induktionstechnologien kann der Laserstrahl dies auf einer sehr schmalen Spur leisten und stellt deshalb für diese Anforderung die beste Lösung dar.“

Laser erobert sich in der Fertigungstechnik Anwendung um Anwendung

Das laserunterstützte Gesenkbiegen kann auf einer regulären Abkantpresse erfolgen. Während zunächst eine kleine Kaltkantung das Werkstück versteift, beginnt der im Unterwerkzeug verbaute Laser mit der lokalen Erwärmung des Materials. Ein im Oberwerkzeug integriertes Thermoelement prüft, ob ein vorgegebenes Temperaturniveau erreicht ist, das sich je nach Materialart und -dicke variieren lässt. Dann wird der Biegevorgang direkt fortgesetzt, und auch die Erwärmung geht weiter. So ist sichergestellt, dass schnell zur richtigen Zeit und am richtigen Ort nur soviel Wärme eingebracht wird, wie tatsächlich nötig ist.

Wie die Beispiele zeigen, ist der Laser in der Fertigungstechnik weiter auf dem Vormarsch und erobert sich Anwendung um Anwendung. Es gäbe noch zahlreiche andere Bereiche zu nennen wo der Laser als Wärmequelle eine entscheidende Rolle spielt. Diese werden wir an dieser Stelle zur gegeben Zeit aufgreifen.

Dietmar Kuhn | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/messundprueftechnik/articles/239006/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Elektrische Spannung: Kaiserslauterer Ingenieure erforschen Versagen bei Kugellagern
28.03.2017 | Technische Universität Kaiserslautern

nachricht Modulares Fertigungssystem für Kettenräder
15.03.2017 | EMAG GmbH & Co. KG

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Atome rennen sehen - Phasenübergang live beobachtet

Ein Wimpernschlag ist unendlich lang dagegen – innerhalb von 350 Billiardsteln einer Sekunde arrangieren sich die Atome neu. Das renommierte Fachmagazin Nature berichtet in seiner aktuellen Ausgabe*: Wissenschaftler vom Center for Nanointegration (CENIDE) der Universität Duisburg-Essen (UDE) haben die Bewegungen eines eindimensionalen Materials erstmals live verfolgen können. Dazu arbeiteten sie mit Kollegen der Universität Paderborn zusammen. Die Forscher fanden heraus, dass die Beschleunigung der Atome jeden Porsche stehenlässt.

Egal wie klein sie sind, die uns im Alltag umgebenden Dinge sind dreidimensional: Salzkristalle, Pollen, Staub. Selbst Alufolie hat eine gewisse Dicke. Das...

Im Focus: Kleinstmagnete für zukünftige Datenspeicher

Ein internationales Forscherteam unter der Leitung von Chemikern der ETH Zürich hat eine neue Methode entwickelt, um eine Oberfläche mit einzelnen magnetisierbaren Atomen zu bestücken. Interessant ist dies insbesondere für die Entwicklung neuartiger winziger Datenträger.

Die Idee ist faszinierend: Auf kleinstem Platz könnten riesige Datenmengen gespeichert werden, wenn man für eine Informationseinheit (in der binären...

Im Focus: Quantenkommunikation: Wie man das Rauschen überlistet

Wie kann man Quanteninformation zuverlässig übertragen, wenn man in der Verbindungsleitung mit störendem Rauschen zu kämpfen hat? Uni Innsbruck und TU Wien präsentieren neue Lösungen.

Wir kommunizieren heute mit Hilfe von Funksignalen, wir schicken elektrische Impulse durch lange Leitungen – doch das könnte sich bald ändern. Derzeit wird...

Im Focus: Entwicklung miniaturisierter Lichtmikroskope - „ChipScope“ will ins Innere lebender Zellen blicken

Das Institut für Halbleitertechnik und das Institut für Physikalische und Theoretische Chemie, beide Mitglieder des Laboratory for Emerging Nanometrology (LENA), der Technischen Universität Braunschweig, sind Partner des kürzlich gestarteten EU-Forschungsprojektes ChipScope. Ziel ist es, ein neues, extrem kleines Lichtmikroskop zu entwickeln. Damit soll das Innere lebender Zellen in Echtzeit beobachtet werden können. Sieben Institute in fünf europäischen Ländern beteiligen sich über die nächsten vier Jahre an diesem technologisch anspruchsvollen Projekt.

Die zukünftigen Einsatzmöglichkeiten des neu zu entwickelnden und nur wenige Millimeter großen Mikroskops sind äußerst vielfältig. Die Projektpartner haben...

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Industriearbeitskreis »Prozesskontrolle in der Lasermaterialbearbeitung ICPC« lädt nach Aachen ein

28.03.2017 | Veranstaltungen

Neue Methoden für zuverlässige Mikroelektronik: Internationale Experten treffen sich in Halle

28.03.2017 | Veranstaltungen

Wie Menschen wachsen

27.03.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Nierentransplantationen: Weisse Blutzellen kontrollieren Virusvermehrung

30.03.2017 | Biowissenschaften Chemie

Zuckerrübenschnitzel: der neue Rohstoff für Werkstoffe?

30.03.2017 | Materialwissenschaften

Integrating Light – Your Partner LZH: Das LZH auf der Hannover Messe 2017

30.03.2017 | HANNOVER MESSE