Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovatives Leichtbau-Torque Vectoring-Getriebe für Visio.M

14.10.2014

Große Reichweite, agile Fahrdynamik, hohe Sicherheit: Diese Ziele will das E-Mobility-Projekt Visio.M mit seinem Elektroauto verwirklichen. Forscher der Technischen Universität München (TUM) haben ein Torque Vectoring-Getriebe entwickelt, dessen Eigenschaften optimal an die Bedingungen bei Elektrofahrzeugen angepasst sind.

Begrenzender Faktor für die Reichweite von Elektrofahrzeugen ist die Energie, die von der Batterie geliefert werden kann. Um möglichst viel Bremsenergie zurückzugewinnen, haben Ingenieure der Forschungsstelle für Zahnräder und Getriebebau (FZG) der TU München ein Torque Vectoring-Getriebe in Leichtbauweise für E-Fahrzeuge entwickelt.


Das Leichtbau-Torque Vectoring-Getriebe des Visio.M

Bild: Philipp Gwinner / TUM

„Während das Drehmoment normalerweise 50 zu 50 auf die Räder der angetriebenen Achse übertragen wird, kann unser Torque Vectoring-Getriebe die Momente je nach Bedarf auf die Räder verteilen“, erklärt Ingenieur Philipp Gwinner von der FZG. „Dadurch wird auch eine besonders gute Fahrdynamik erreicht.“ Beschleunigt das Fahrzeug in der Kurve, wird mehr Drehmoment auf das kurvenäußere Rad gegeben. Das Auto lenkt von selbst in die Kurve ein. Die Folge ist ein agileres und gleichzeitig sichereres Fahrverhalten.

Rückgewinnung der Bremsenergie auch in Kurven

Noch wichtiger ist den Forschern allerdings die optimale Rückgewinnung der Bremsenergie. Normalerweise wandeln die Bremsen Bewegungsenergie in Wärme um. Sogenannte Rekuperationssysteme können dies verhindern. Sie funktionieren nach dem Prinzip des Fahrrad-Dynamos, der die vom Rad abgenommene Leistung in elektrischen Strom umwandelt. Dieser kann im Falle von Elektrofahrzeugen zurück in die Batterie gespeist werden und erhöht so deren Reichweite.

In Kurven jedoch ist die Rekuperation des Fahrzeugs begrenzt, da das kurveninnere Rad deutlich weniger belastet wird als das kurvenäußere. Die Torque Vectoring-Funktion stellt das Rekuperationsmoment für beide Antriebsräder individuell ein. Das steigert die Stabilität des Fahrzeugs und erlaubt gleichzeitig mehr Energie zurück zu gewinnen.

Weniger Gewicht, geringere Kosten

Torque Vectoring-Getriebe werden heute in wenigen Oberklassefahrzeugen und Sportwagen mit Verbrennungsmotoren eingesetzt. Wegen ihrer hohen Kosten und des zusätzlichen Gewichts kamen sie aber bei Elektroautos bisher nicht zum Einsatz. Das Ziel der Forscher war es daher, das Getriebe für kleine Fahrzeuge mit Elektroantrieb zu optimieren.

Anstelle der bei Differenzialgetrieben üblichen Kegelradverzahnung entwickelten die Ingenieure ein Stirnraddifferenzial, bei dem über ein Planeten-Überlagerungsgetriebe ein zusätzliches Drehmoment von außen aufgeprägt werden kann. Mit einer im Vergleich zum Antriebsmotor sehr kleinen Torque Vectoring-Elektromaschine können sie damit bei beliebigen Geschwindigkeiten ein hohes Giermoment zum Einstellen der gewünschten fahrdynamischen Eigenschaften des Fahrzeugs erzeugen.

Die Gehäuse der ersten Prototypen bestehen aus Aluminium. Um noch mehr Gewicht einzusparen, wird das Aluminium-Gehäuse in der nächsten Entwicklungsstufe durch ein Verbundgehäuse aus Aluminium und faserverstärktem Kunststoff ersetzt. Um die Gehäusebelastung zu reduzieren ohne die gerade bei Elektrofahrzeugen kritischen Verzahnungsgeräusche zu erhöhen, haben die Forscher eine besondere axialkraftfreie Verzahnung entwickelt. Dies und weitere Bauteiloptimierungen reduzieren das Getriebegewicht um mehr als zehn Prozent.

„Das Elegante an dem von uns entwickelten Torque Vectoring-Getriebe ist, dass sich mit diesem nicht nur das Rekuperationsniveau heben und damit die elektrische Reichweite steigern lässt“, sagt Professor Karsten Stahl, Leiter der FZG, „das Getriebe erhöht auch die Fahrdynamik und damit Fahrspaß und Sicherheit. Durch die laufenden weiteren Optimierungsmaßnahmen ist zu erwarten, dass Gewicht und Kosten zukünftig im Bereich von heutigen Standard-Differentialgetrieben liegen werden“.

Am Forschungsprojekt „Visio.M“ (www.visiom-automobile.de) beteiligen sich, neben den Automobilkonzernen BMW AG (Konsortialführer) und Daimler AG, die Technische Universität München als wissenschaftlicher Partner, sowie Autoliv B. V. & Co. KG, Bundesanstalt für Straßenwesen (BASt), Continental AG, Finepower GmbH, Hyve AG, IAV GmbH, InnoZ GmbH, Intermap Technologies GmbH, LIONSmart GmbH, Amtek Tekfor Holding GmbH, Siemens AG, Texas Instruments Deutschland GmbH und TÜV SÜD AG. Das Projekt wird im Rahmen des Förderprogramms IKT 2020 und des Förderschwerpunkts „Schlüsseltechnologien für die Elektromobilität – STROM“ des Bundesministeriums für Bildung und Forschung (BMBF) über 2,5 Jahre gefördert und hat ein Gesamtvolumen von 10,8 Mio. Euro.


Kontakt:

Prof. Dr.-Ing. Karsten Stahl
Technische Universität München
Lehrstuhl für Maschinenelemente
FZG - Forschungsstelle für Zahnräder und Getriebebau
Tel.: +49 89 289 15805
E-Mail: stahl@fzg.mw.tum.de
Internet: www.fzg.mw.tum.de

Dr. Ulrich Marsch | Technische Universität München

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht rollFEED® Turning auf EMAG Maschinen: Tempomacher für die Drehbearbeitung
17.10.2017 | EMAG GmbH & Co. KG

nachricht Schuler-MSC2000-Dual-Servopresse am Fraunhofer IPT für Werkzeugtests und Entwicklungsprojekte
17.10.2017 | Fraunhofer-Institut für Produktionstechnologie IPT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Sicheres Bezahlen ohne Datenspur

Ob als Smartphone-App für die Fahrkarte im Nahverkehr, als Geldwertkarten für das Schwimmbad oder in Form einer Bonuskarte für den Supermarkt: Für viele gehören „elektronische Geldbörsen“ längst zum Alltag. Doch vielen Kunden ist nicht klar, dass sie mit der Nutzung dieser Angebote weitestgehend auf ihre Privatsphäre verzichten. Am Karlsruher Institut für Technologie (KIT) entsteht ein sicheres und anonymes System, das gleichzeitig Alltagstauglichkeit verspricht. Es wird nun auf der Konferenz ACM CCS 2017 in den USA vorgestellt.

Es ist vor allem das fehlende Problembewusstsein, das den Informatiker Andy Rupp von der Arbeitsgruppe „Kryptographie und Sicherheit“ am KIT immer wieder...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Topologische Isolatoren: Neuer Phasenübergang entdeckt

Physiker des HZB haben an BESSY II Materialien untersucht, die zu den topologischen Isolatoren gehören. Dabei entdeckten sie einen neuen Phasenübergang zwischen zwei unterschiedlichen topologischen Phasen. Eine dieser Phasen ist ferroelektrisch: das bedeutet, dass sich im Material spontan eine elektrische Polarisation ausbildet, die sich durch ein äußeres elektrisches Feld umschalten lässt. Dieses Ergebnis könnte neue Anwendungen wie das Schalten zwischen unterschiedlichen Leitfähigkeiten ermöglichen.

Topologische Isolatoren zeichnen sich dadurch aus, dass sie an ihren Oberflächen Strom sehr gut leiten, während sie im Innern Isolatoren sind. Zu dieser neuen...

Im Focus: Smarte Sensoren für effiziente Prozesse

Materialfehler im Endprodukt können in vielen Industriebereichen zu frühzeitigem Versagen führen und den sicheren Gebrauch der Erzeugnisse massiv beeinträchtigen. Eine Schlüsselrolle im Rahmen der Qualitätssicherung kommt daher intelligenten, zerstörungsfreien Sensorsystemen zu, die es erlauben, Bauteile schnell und kostengünstig zu prüfen, ohne das Material selbst zu beschädigen oder die Oberfläche zu verändern. Experten des Fraunhofer IZFP in Saarbrücken präsentieren vom 7. bis 10. November 2017 auf der Blechexpo in Stuttgart zwei Exponate, die eine schnelle, zuverlässige und automatisierte Materialcharakterisierung und Fehlerbestimmung ermöglichen (Halle 5, Stand 5306).

Bei Verwendung zeitaufwändiger zerstörender Prüfverfahren zieht die Qualitätsprüfung durch die Beschädigung oder Zerstörung der Produkte enorme Kosten nach...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

DFG unterstützt Kongresse und Tagungen - Dezember 2017

17.10.2017 | Veranstaltungen

Intelligente Messmethoden für die Bauwerkssicherheit: Fachtagung „Messen im Bauwesen“ am 14.11.2017

17.10.2017 | Veranstaltungen

Meeresbiologe Mark E. Hay zu Gast bei den "Noblen Gesprächen" am Beutenberg Campus in Jena

16.10.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Sicheres Bezahlen ohne Datenspur

17.10.2017 | Informationstechnologie

Pflanzen gegen Staunässe schützen

17.10.2017 | Biowissenschaften Chemie

Den Trends der Umweltbranche auf der Spur

17.10.2017 | Ökologie Umwelt- Naturschutz