Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovative Schleifverfahren machen Hochleistungsbearbeitung wirtschaftlicher

14.07.2009
Um Hochleistungswerkstoffe wirtschaftlich nutzen zu können, muss das Spektrum der Bearbeitungsmöglichkeiten weiterentwickelt werden. Daher gilt es, neue Fertigungskinematiken und Werkzeuge für die anspruchsvollen Bearbeitungsaufgaben bereitzustellen. Beispiele ergeben sich im Schnellhubschleifen und dem Planschleifen mit Planetenkinematik.

Innovative Hochleistungswerkstoffe überzeugen durch ihre Anwendungseigenschaften. Bauteile aus hochwarmfesten metallischen Legierungen, CMC (Ceramic Matrix Composites) und Hochleistungskeramiken erschließen aufgrund ihrer Festigkeit, ihrer Beständigkeit gegenüber Wärme, Verformung, Verschleiß sowie ihrer Resistenz gegen chemische Einflüsse immer weitere Anwendungsgebiete. Die stetig steigenden Anforderungen an die Bauteilqualität wirken sich dabei erschwerend auf die Endbearbeitung dieser Werkstoffe aus.

Mit dem Ziel der Steigerung von Produktivität und Qualität in Schleifprozessen fokussiert die universitäre Forschung des Instituts für Werkzeugmaschinen und Fabrikbetrieb (IWF) der TU Berlin auch die industrienahe Forschung des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik (IPK) die Entwicklung und die Optimierung von innovativen Schleifprozessen und benötigten Werkzeugen. Dieser Beitrags betrachtet zwei Konzepte, die für die jeweilige Bearbeitungsaufgabe hohes Potenzial zur Erreichung der genannten Ziele aufweisen.

CD-(Continuous-Dressing-)Tiefschleifen ist am weitesten verbreitet

Das Schnellhubschleifen stellt als kinematische Umkehrung des Tiefschleifens ein Verfahren zur hochproduktiven Planbearbeitung und Profilbearbeitung bereit. Bei der Fertigung großer Losgrößen aus metallischen Werkstoffen mit konventionellen Schleifwerkzeugen ist derzeit das CD-(Continuous-Dressing-)Tiefschleifen das am weitesten verbreitete Verfahren. Die Nachteile liegen hier in der hohen Kostenbindung der benötigten Abrichtwerkzeuge, dem hohen Schleifscheibenverschleiß, der unzureichenden Flexibilität und dem gesteigerten Optimierungsaufwand, der einer prozesssicheren und schädigungsarmen Fertigung vorgelagert ist.

Im Gegensatz zum Tiefschleifen wird die Geometrie beim Schnellhubschleifen mit vergleichsweise geringen Zustellungen und deutlich gesteigerten Werkstückgeschwindigkeiten in mehreren Überschliffen eingebracht. Mit dem am Produktionstechnischen Zentrum (PTZ) in Berlin verfügbaren prototypischen Maschinensystem Blohm Profimat MT 408 können Werkstückgeschwindigkeiten von bis zu vft = 200 m/min bei Beschleunigungen von bis zu aft = 50 m/s² eingestellt werden.

Schleifenergie in der Wirkzone umsetzen

Hintergrund der Entwicklung dieses Maschinensystems bilden Überlegungen zur Umsetzung der Schleifenergie in der Wirkzone [1, 2]. Insbesondere durch Variation der Werkstückgeschwindigkeit kann bei Betrachtung konstanter Schnittgeschwindigkeit vc und konstantem Zeitspanungsvolumen Qw hoher Einfluss auf die Spangeometrie genommen werden. Die der Materialabtrennung vorgelagerten elasto-plastischen Verformungen werden durch ein schnelleres Erreichen der notwendigen Schnitteinsatztiefe Tµ und gesteigerter Spanungsdicken verringert.

Ein Absinken der spezifischen Schleifenergie ec ist die Folge. Außer dem dadurch verringerten Energieeintrag in das Werkstück ist durch die geringen Zustellungen eine deutlich verbesserte Kühlschmierstoffzufuhr in die Wirkzone möglich, wodurch sich die thermischen Schädigungen in der Werkstückrandzone deutlich verringern lassen [3]. Aufgrund der veränderten Prozesskinematik müssen Änderungen in der Schleifscheibenspezifikation vorgenommen werden. Anders als beim Tiefschleifen muss das Werkzeug nicht über vergleichsweise hohe Porenvolumina verfügen.

Die Zahl der kinematischen Schneiden kann beim Schnellhubschleifen durch einen erhöhten Kornanteil gesteigert werden, wodurch sich bei entsprechender Prozessführung ein Produktivitätsgewinn ergibt. Dem Anwender steht somit ein flexibles und leistungsfähiges Verfahren zur Verfügung, um kleine Losgrößen und Einzelteile prozesssicher zu fertigen.

CD-Tiefschleifen erfordert leistungsfähige Kühlung

Die Abtrennmechanismen bei der schleifenden Bearbeitung von Nickelbasislegierungen sind aufgrund der Werkstoffeigenschaften von hohen plastischen Verformungsanteilen geprägt. Um die werkstückseitigen Schädigungen zu begrenzen, müssen die beim CD-Tiefschleifen eingesetzten Maschinensysteme über eine sehr leistungsfähige Kühlschmierstoffversorgung und eine das Schleifscheibenprofil abbildende Düsengeometrie verfügen. Diese Anforderungen können beim Schleifen mit hohen Werkstückgeschwindigkeiten aufgrund der guten Zugänglichkeit der Wirkzone verringert werden.

Die veränderten Spanungsgrößen beim Schnellhubschleifen stellen hohe Ansprüche an die Verschleißbeständigkeit der Schleifkörnung und Schleifscheibenbindung. Insbesondere mikrokristalline Schleifkörnung auf Aluminiumoxidbasis, sogenannte Sinterkorunde, bieten hier hohes Einsatzpotenzial. Bei entsprechender Kornbeanspruchung kann ein verschleißgünstiges mikrokristallines Splittern eingestellt werden.

Bisher kamen diese Kornwerkstoffe meist nur in geringen Beimengungen zum Einsatz, weil die zum Splittern notwendigen Einzelkornkräfte mit bestehenden Verfahren in der Regel nicht ohne werkstückseitige Schädigung aufgebracht werden können.

Bei unzureichender Beanspruchung neigen auch diese Körnungen zum thermischen Verschleiß, der zu Anflächungen beziehungsweise zum Abstumpfen der Einzelschneide führt. Durch die gesteigerten Einzelkornspanungsdicken beim Schnellhubschleifen können die Potenziale dieser innovativen Schleifkörnungen erstmals nutzbar gemacht werden.

Im Rahmen der durchgeführten Untersuchungen konnten die spezifischen Schleifenergien (Bild 1), bei sechsfachem theoretischem bezogenen Zeitspanungsvolumen von Qw = 12 mm3/mms auf Qw = 72 mm3/mms mehr als halbiert werden. Aufgrund der sinkenden Spanaspektverhältnisse, also kürzerer und dickerer Späne ändert sich nachweislich die Oberflächengüte. Es konnten jedoch keine Abhängigkeiten zum Arbeitseingriff festgestellt werden. So war lediglich ein nahezu linearer Anstieg der Oberflächenkennwerte mit Erhöhung der Werkstückgeschwindigkeit zu verzeichnen.

Planschleifen mit Planetenkinematik

Ein weiteres Verfahren mit hohem Potenzial zur Bearbeitung von Hochleistungswerkstoffen ist das Planschleifen mit Planetenkinematik. Das Verfahren stellt eine logische und konsequente Weiterentwicklung des Läppens dar. Zur Bearbeitung werden die Werkstücke in kreisförmige, außenverzahnte Werkstückhalter eingelegt. Diese sogenannten Läuferscheiben befinden sich zwischen den beiden Schleifscheiben und werden von einem feststehenden Außenstiftkranz und einem angetriebenen Innenstiftkranz geführt.

Die Drehbewegung beider Schleifscheiben und des Innenstiftkranzes erzeugt eine Relativbewegung, die aus der Planetengetriebetechnik bekannt ist.

Das Planschleifen mit Planetenkinematik unterscheidet sich in seinem Aufbau und in der Prozesstechnologie und somit auch im Arbeitsergebnis von anderen Schleifverfahren. Die charakteristischen Merkmale bestehen einerseits in der doppelseitigen Bearbeitung und andererseits in der Relativbewegung zwischen Werkstücken und Schleifscheiben. Die vergleichsweise unkomplizierte Prozesssteuerung ist einer der Hauptgründe für die zunehmende Verbreitung dieses Bearbeitungsverfahrens.

Theoretische Schnittgeschwindigkeiten von bis zu vc = 45 m/s erreichbar

Durch intensive Forschung auf dem Gebiet der Bearbeitung sprödharter Materialien konnte nachgewiesen werden, dass die optimalen Schnittbedingungen auch bei der Planschleifbearbeitung mit Planetenkinematik im Bereich erhöhter Schnittgeschwindigkeiten und Anpresskräfte liegen. Aufgrund dieser Untersuchungsergebnisse und des wachsenden Bedarfs nach Bearbeitungsoptimierung hat die Stähli Läpp Technik AG in Zusammenarbeit mit dem IWF das prototypische Schleifzentrum DLM 505 HS konzipiert und konstruiert, mit dem Schnittgeschwindigkeiten und Schleifdrücke zur Bearbeitung von Hochleistungswerkstoffen realisiert werden können.

So sind mit diesem Maschinensystem Schleifscheibendrehzahlen von bis zu 2000 min-1 sowie Anpresskräfte von bis zu 4000 daN möglich. Dadurch können theoretische Schnittgeschwindigkeiten von bis zu vc = 45 m/s am Werkstück erreicht werden.

Dadurch ergeben sich technische und wirtschaftliche Vorteile in Form von kürzerer Bearbeitungszeit sowie höherer Bauteilqualität. Durch Anpassung der Maschinensteuerung lassen sich Schruppen, Schlichten und Finishbearbeitung in einem Arbeitsgang realisieren. Ziel aktueller Forschungsvorhaben ist es, neue Bearbeitungstechniken für ein breites Werkstoffspektrum zu entwickeln, um so eine Prozessoptimierung durch signifikante Senkung der Fertigungskosten bei verbessertem Arbeitsergebnis zu erzielen.

Ceramic Matrix Compositesweisen geringe Dichte auf

Ceramic Matrix Composites (CMC) zählen zu einer Leichtbauwerkstoffklasse, die sich durch hohe Temperaturstabilität und geringe Dichte auszeichnet. Mit diesen Eigenschaften sind CMC den metallischen Werkstoffen bei Hochtemperaturanwendungen überlegen. Bei der Bearbeitung dieser Werkstoffe sind deutlich geringere Zerspankräfte bei stark erhöhtem Werkzeugverschleiß zu beobachten. Die Herstellung einer befriedigenden Oberflächengüte durch Verringerung von Ausbrüchen, örtlicher Delamination und das Aufdecken von inhärenter Porosität ist eine große Herausforderung.

In jüngster Zeit wurde am PTZ in Berlin der Einsatz des Hochgeschwindigkeits- und Hochleistungsplanschleifens mit Planetenkinematik zur Bearbeitung von CMC-Bauteilen mit hohen Anforderungen an Ebenheit, Planparallelität und Oberflächenqualität untersucht. Die untersuchten Werkstücke zeichnen sich aufgrund der Prozesskinematik und -leistung durch exzellente Ebenheiten Eo und Oberflächengüten aus (Bild 4). Im Vergleich zur konventionellen Prozessführung konnte die Bearbeitungszeit um den Faktor fünf reduziert werden.

Hohes Potenzial zur Kostensenkung

Die wirtschaftliche Bearbeitung von Bauteilen mit planparallelen Funktionsflächen erfordert umfangreiche Kenntnisse bezüglich des Werkstoffs, der Werkzeuge sowie des Prozesses. Zur Kostensenkung zeigen die vorgestellten Konzepte ein hohes Potenzial auf. Dies resultiert aus der Weiterentwicklung von Maschinensystemen und -konzepten in Kombination mit einer verbesserten Prozessanalyse.

Die bisherigen Erfolge im Bereich des Hochgeschwindigkeits- und Hochleistungsplanschleifens mit Planetenkinematik belegen das enorme wirtschaftliche Potenzial dieser Technik. Das Verfahren ermöglicht bei hoher Bauteilqualität und geringem Schleifscheibenverschleiß Zerspanleistungen, wie sie sonst nur bei der Fertigung mit geometrisch bestimmter Schneide erreicht werden.

Ebenso hohes Einsatzpotenzial bietet die Kinematik des Schnellhubschleifens. Verglichen mit konventionellen Pendelschleifprozessen konnte bei ersten Untersuchungen die Produktivität, bei gleichzeitig verringerter Werkstückschädigung, deutlich gesteigert werden.

Literatur

[1] Zeppenfeld, C.; Schnellhubschleifen von g-Titanaluminiden. Dissertation RWTH Aachen, 2005.

[2] Tönshoff, H. K.; Karpuschewski, B.; Meyer, T.: Schnellhubschleifen von Hochleistungskeramik. In: Jahrbuch Schleifen, Honen, Läppen und Polieren. 58. Ausgabe, Vulkan-Verlag, 1997.

[3] Nachmani, Z.; Randzonenbeeinflussung beim Schnellhubschleifen. Dissertation RWTH Aachen, 2008.

[4] Ardelt, Th.: Einfluss der Relativbewegung auf den Prozess und das Arbeitsergebnis beim Planschleifen mit Planetenkinematik. Dissertation TU Berlin, 2000; zugl. Reihe Berichte aus dem Produktionstechnischen Zentrum Berlin, 2001.

[5] Uhlmann, E.; Ardelt, Th.: Influence of Kinematics on the Face Grinding Process on Lapping Machines. Annals of the CIRP 48/1, S. 281-284, 1999.

Prof. Eckart Uhlmann ist Leiter des Fachgebiets Werkzeugmaschinen und Fertigungstechnik am Institut für Werkzeugmaschinen und Fabrikbetrieb (IWF) der TU Berlin und Leiter des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik (IPK) in Berlin. Dipl.-Ing. Christoph Sammler und Tom Hoghé sind wissenschaftliche Mitarbeiter am IWF. Tiago Borsoi Klein M. Sc. ist wissenschaftlicher Mitarbeiter am Fraunhofer-IPK.

Frank Fladerer | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/200863/index.html

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Assistenzsysteme für die Blechumformung
28.07.2017 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie