Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Innovative Schleifverfahren machen Hochleistungsbearbeitung wirtschaftlicher

14.07.2009
Um Hochleistungswerkstoffe wirtschaftlich nutzen zu können, muss das Spektrum der Bearbeitungsmöglichkeiten weiterentwickelt werden. Daher gilt es, neue Fertigungskinematiken und Werkzeuge für die anspruchsvollen Bearbeitungsaufgaben bereitzustellen. Beispiele ergeben sich im Schnellhubschleifen und dem Planschleifen mit Planetenkinematik.

Innovative Hochleistungswerkstoffe überzeugen durch ihre Anwendungseigenschaften. Bauteile aus hochwarmfesten metallischen Legierungen, CMC (Ceramic Matrix Composites) und Hochleistungskeramiken erschließen aufgrund ihrer Festigkeit, ihrer Beständigkeit gegenüber Wärme, Verformung, Verschleiß sowie ihrer Resistenz gegen chemische Einflüsse immer weitere Anwendungsgebiete. Die stetig steigenden Anforderungen an die Bauteilqualität wirken sich dabei erschwerend auf die Endbearbeitung dieser Werkstoffe aus.

Mit dem Ziel der Steigerung von Produktivität und Qualität in Schleifprozessen fokussiert die universitäre Forschung des Instituts für Werkzeugmaschinen und Fabrikbetrieb (IWF) der TU Berlin auch die industrienahe Forschung des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik (IPK) die Entwicklung und die Optimierung von innovativen Schleifprozessen und benötigten Werkzeugen. Dieser Beitrags betrachtet zwei Konzepte, die für die jeweilige Bearbeitungsaufgabe hohes Potenzial zur Erreichung der genannten Ziele aufweisen.

CD-(Continuous-Dressing-)Tiefschleifen ist am weitesten verbreitet

Das Schnellhubschleifen stellt als kinematische Umkehrung des Tiefschleifens ein Verfahren zur hochproduktiven Planbearbeitung und Profilbearbeitung bereit. Bei der Fertigung großer Losgrößen aus metallischen Werkstoffen mit konventionellen Schleifwerkzeugen ist derzeit das CD-(Continuous-Dressing-)Tiefschleifen das am weitesten verbreitete Verfahren. Die Nachteile liegen hier in der hohen Kostenbindung der benötigten Abrichtwerkzeuge, dem hohen Schleifscheibenverschleiß, der unzureichenden Flexibilität und dem gesteigerten Optimierungsaufwand, der einer prozesssicheren und schädigungsarmen Fertigung vorgelagert ist.

Im Gegensatz zum Tiefschleifen wird die Geometrie beim Schnellhubschleifen mit vergleichsweise geringen Zustellungen und deutlich gesteigerten Werkstückgeschwindigkeiten in mehreren Überschliffen eingebracht. Mit dem am Produktionstechnischen Zentrum (PTZ) in Berlin verfügbaren prototypischen Maschinensystem Blohm Profimat MT 408 können Werkstückgeschwindigkeiten von bis zu vft = 200 m/min bei Beschleunigungen von bis zu aft = 50 m/s² eingestellt werden.

Schleifenergie in der Wirkzone umsetzen

Hintergrund der Entwicklung dieses Maschinensystems bilden Überlegungen zur Umsetzung der Schleifenergie in der Wirkzone [1, 2]. Insbesondere durch Variation der Werkstückgeschwindigkeit kann bei Betrachtung konstanter Schnittgeschwindigkeit vc und konstantem Zeitspanungsvolumen Qw hoher Einfluss auf die Spangeometrie genommen werden. Die der Materialabtrennung vorgelagerten elasto-plastischen Verformungen werden durch ein schnelleres Erreichen der notwendigen Schnitteinsatztiefe Tµ und gesteigerter Spanungsdicken verringert.

Ein Absinken der spezifischen Schleifenergie ec ist die Folge. Außer dem dadurch verringerten Energieeintrag in das Werkstück ist durch die geringen Zustellungen eine deutlich verbesserte Kühlschmierstoffzufuhr in die Wirkzone möglich, wodurch sich die thermischen Schädigungen in der Werkstückrandzone deutlich verringern lassen [3]. Aufgrund der veränderten Prozesskinematik müssen Änderungen in der Schleifscheibenspezifikation vorgenommen werden. Anders als beim Tiefschleifen muss das Werkzeug nicht über vergleichsweise hohe Porenvolumina verfügen.

Die Zahl der kinematischen Schneiden kann beim Schnellhubschleifen durch einen erhöhten Kornanteil gesteigert werden, wodurch sich bei entsprechender Prozessführung ein Produktivitätsgewinn ergibt. Dem Anwender steht somit ein flexibles und leistungsfähiges Verfahren zur Verfügung, um kleine Losgrößen und Einzelteile prozesssicher zu fertigen.

CD-Tiefschleifen erfordert leistungsfähige Kühlung

Die Abtrennmechanismen bei der schleifenden Bearbeitung von Nickelbasislegierungen sind aufgrund der Werkstoffeigenschaften von hohen plastischen Verformungsanteilen geprägt. Um die werkstückseitigen Schädigungen zu begrenzen, müssen die beim CD-Tiefschleifen eingesetzten Maschinensysteme über eine sehr leistungsfähige Kühlschmierstoffversorgung und eine das Schleifscheibenprofil abbildende Düsengeometrie verfügen. Diese Anforderungen können beim Schleifen mit hohen Werkstückgeschwindigkeiten aufgrund der guten Zugänglichkeit der Wirkzone verringert werden.

Die veränderten Spanungsgrößen beim Schnellhubschleifen stellen hohe Ansprüche an die Verschleißbeständigkeit der Schleifkörnung und Schleifscheibenbindung. Insbesondere mikrokristalline Schleifkörnung auf Aluminiumoxidbasis, sogenannte Sinterkorunde, bieten hier hohes Einsatzpotenzial. Bei entsprechender Kornbeanspruchung kann ein verschleißgünstiges mikrokristallines Splittern eingestellt werden.

Bisher kamen diese Kornwerkstoffe meist nur in geringen Beimengungen zum Einsatz, weil die zum Splittern notwendigen Einzelkornkräfte mit bestehenden Verfahren in der Regel nicht ohne werkstückseitige Schädigung aufgebracht werden können.

Bei unzureichender Beanspruchung neigen auch diese Körnungen zum thermischen Verschleiß, der zu Anflächungen beziehungsweise zum Abstumpfen der Einzelschneide führt. Durch die gesteigerten Einzelkornspanungsdicken beim Schnellhubschleifen können die Potenziale dieser innovativen Schleifkörnungen erstmals nutzbar gemacht werden.

Im Rahmen der durchgeführten Untersuchungen konnten die spezifischen Schleifenergien (Bild 1), bei sechsfachem theoretischem bezogenen Zeitspanungsvolumen von Qw = 12 mm3/mms auf Qw = 72 mm3/mms mehr als halbiert werden. Aufgrund der sinkenden Spanaspektverhältnisse, also kürzerer und dickerer Späne ändert sich nachweislich die Oberflächengüte. Es konnten jedoch keine Abhängigkeiten zum Arbeitseingriff festgestellt werden. So war lediglich ein nahezu linearer Anstieg der Oberflächenkennwerte mit Erhöhung der Werkstückgeschwindigkeit zu verzeichnen.

Planschleifen mit Planetenkinematik

Ein weiteres Verfahren mit hohem Potenzial zur Bearbeitung von Hochleistungswerkstoffen ist das Planschleifen mit Planetenkinematik. Das Verfahren stellt eine logische und konsequente Weiterentwicklung des Läppens dar. Zur Bearbeitung werden die Werkstücke in kreisförmige, außenverzahnte Werkstückhalter eingelegt. Diese sogenannten Läuferscheiben befinden sich zwischen den beiden Schleifscheiben und werden von einem feststehenden Außenstiftkranz und einem angetriebenen Innenstiftkranz geführt.

Die Drehbewegung beider Schleifscheiben und des Innenstiftkranzes erzeugt eine Relativbewegung, die aus der Planetengetriebetechnik bekannt ist.

Das Planschleifen mit Planetenkinematik unterscheidet sich in seinem Aufbau und in der Prozesstechnologie und somit auch im Arbeitsergebnis von anderen Schleifverfahren. Die charakteristischen Merkmale bestehen einerseits in der doppelseitigen Bearbeitung und andererseits in der Relativbewegung zwischen Werkstücken und Schleifscheiben. Die vergleichsweise unkomplizierte Prozesssteuerung ist einer der Hauptgründe für die zunehmende Verbreitung dieses Bearbeitungsverfahrens.

Theoretische Schnittgeschwindigkeiten von bis zu vc = 45 m/s erreichbar

Durch intensive Forschung auf dem Gebiet der Bearbeitung sprödharter Materialien konnte nachgewiesen werden, dass die optimalen Schnittbedingungen auch bei der Planschleifbearbeitung mit Planetenkinematik im Bereich erhöhter Schnittgeschwindigkeiten und Anpresskräfte liegen. Aufgrund dieser Untersuchungsergebnisse und des wachsenden Bedarfs nach Bearbeitungsoptimierung hat die Stähli Läpp Technik AG in Zusammenarbeit mit dem IWF das prototypische Schleifzentrum DLM 505 HS konzipiert und konstruiert, mit dem Schnittgeschwindigkeiten und Schleifdrücke zur Bearbeitung von Hochleistungswerkstoffen realisiert werden können.

So sind mit diesem Maschinensystem Schleifscheibendrehzahlen von bis zu 2000 min-1 sowie Anpresskräfte von bis zu 4000 daN möglich. Dadurch können theoretische Schnittgeschwindigkeiten von bis zu vc = 45 m/s am Werkstück erreicht werden.

Dadurch ergeben sich technische und wirtschaftliche Vorteile in Form von kürzerer Bearbeitungszeit sowie höherer Bauteilqualität. Durch Anpassung der Maschinensteuerung lassen sich Schruppen, Schlichten und Finishbearbeitung in einem Arbeitsgang realisieren. Ziel aktueller Forschungsvorhaben ist es, neue Bearbeitungstechniken für ein breites Werkstoffspektrum zu entwickeln, um so eine Prozessoptimierung durch signifikante Senkung der Fertigungskosten bei verbessertem Arbeitsergebnis zu erzielen.

Ceramic Matrix Compositesweisen geringe Dichte auf

Ceramic Matrix Composites (CMC) zählen zu einer Leichtbauwerkstoffklasse, die sich durch hohe Temperaturstabilität und geringe Dichte auszeichnet. Mit diesen Eigenschaften sind CMC den metallischen Werkstoffen bei Hochtemperaturanwendungen überlegen. Bei der Bearbeitung dieser Werkstoffe sind deutlich geringere Zerspankräfte bei stark erhöhtem Werkzeugverschleiß zu beobachten. Die Herstellung einer befriedigenden Oberflächengüte durch Verringerung von Ausbrüchen, örtlicher Delamination und das Aufdecken von inhärenter Porosität ist eine große Herausforderung.

In jüngster Zeit wurde am PTZ in Berlin der Einsatz des Hochgeschwindigkeits- und Hochleistungsplanschleifens mit Planetenkinematik zur Bearbeitung von CMC-Bauteilen mit hohen Anforderungen an Ebenheit, Planparallelität und Oberflächenqualität untersucht. Die untersuchten Werkstücke zeichnen sich aufgrund der Prozesskinematik und -leistung durch exzellente Ebenheiten Eo und Oberflächengüten aus (Bild 4). Im Vergleich zur konventionellen Prozessführung konnte die Bearbeitungszeit um den Faktor fünf reduziert werden.

Hohes Potenzial zur Kostensenkung

Die wirtschaftliche Bearbeitung von Bauteilen mit planparallelen Funktionsflächen erfordert umfangreiche Kenntnisse bezüglich des Werkstoffs, der Werkzeuge sowie des Prozesses. Zur Kostensenkung zeigen die vorgestellten Konzepte ein hohes Potenzial auf. Dies resultiert aus der Weiterentwicklung von Maschinensystemen und -konzepten in Kombination mit einer verbesserten Prozessanalyse.

Die bisherigen Erfolge im Bereich des Hochgeschwindigkeits- und Hochleistungsplanschleifens mit Planetenkinematik belegen das enorme wirtschaftliche Potenzial dieser Technik. Das Verfahren ermöglicht bei hoher Bauteilqualität und geringem Schleifscheibenverschleiß Zerspanleistungen, wie sie sonst nur bei der Fertigung mit geometrisch bestimmter Schneide erreicht werden.

Ebenso hohes Einsatzpotenzial bietet die Kinematik des Schnellhubschleifens. Verglichen mit konventionellen Pendelschleifprozessen konnte bei ersten Untersuchungen die Produktivität, bei gleichzeitig verringerter Werkstückschädigung, deutlich gesteigert werden.

Literatur

[1] Zeppenfeld, C.; Schnellhubschleifen von g-Titanaluminiden. Dissertation RWTH Aachen, 2005.

[2] Tönshoff, H. K.; Karpuschewski, B.; Meyer, T.: Schnellhubschleifen von Hochleistungskeramik. In: Jahrbuch Schleifen, Honen, Läppen und Polieren. 58. Ausgabe, Vulkan-Verlag, 1997.

[3] Nachmani, Z.; Randzonenbeeinflussung beim Schnellhubschleifen. Dissertation RWTH Aachen, 2008.

[4] Ardelt, Th.: Einfluss der Relativbewegung auf den Prozess und das Arbeitsergebnis beim Planschleifen mit Planetenkinematik. Dissertation TU Berlin, 2000; zugl. Reihe Berichte aus dem Produktionstechnischen Zentrum Berlin, 2001.

[5] Uhlmann, E.; Ardelt, Th.: Influence of Kinematics on the Face Grinding Process on Lapping Machines. Annals of the CIRP 48/1, S. 281-284, 1999.

Prof. Eckart Uhlmann ist Leiter des Fachgebiets Werkzeugmaschinen und Fertigungstechnik am Institut für Werkzeugmaschinen und Fabrikbetrieb (IWF) der TU Berlin und Leiter des Fraunhofer-Instituts für Produktionsanlagen und Konstruktionstechnik (IPK) in Berlin. Dipl.-Ing. Christoph Sammler und Tom Hoghé sind wissenschaftliche Mitarbeiter am IWF. Tiago Borsoi Klein M. Sc. ist wissenschaftlicher Mitarbeiter am Fraunhofer-IPK.

Frank Fladerer | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/200863/index.html

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Nutzfahrzeuge: Neuer Professor entwickelt effizientere und leichtere Bauteile mit 3D-Metall-Drucker
03.05.2018 | Technische Universität Kaiserslautern

nachricht Die Zukunft des Fliegens auf dem Prüfstand
25.04.2018 | Technische Universität München

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Faserlaser mit einstellbarer Wellenlänge

Faserlaser sind ein effizientes und robustes Werkzeug zum Schweißen und Schneiden von Metallen beispielsweise in der Automobilindustrie. Systeme bei denen die Wellenlänge des Laserlichts flexibel einstellbar ist, sind für spektroskopische Anwendungen und die Medizintechnik interessant. Wissenschaftlerinnen und Wissenschaftler des Leibniz-Instituts für Photonische Technologien (Leibniz-IPHT) haben, im Rahmen des vom Bundesministerium für Bildung und Forschung (BMBF) geförderten Projekts „FlexTune“, ein neues Abstimmkonzept realisiert, das erstmals verschiedene Emissionswellenlängen voneinander unabhängig und zeitlich synchron erzeugt.

Faserlaser bieten im Vergleich zu herkömmlichen Lasern eine höhere Strahlqualität und Energieeffizienz. Integriert in einen vollständig faserbasierten...

Im Focus: LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

Auf der LASYS 2018 zeigt das Laser Zentrum Hannover e.V. (LZH) vom 5. bis zum 7. Juni Prozesse für die Lasermaterialbearbeitung von morgen in Halle 4 an Stand 4E75. Mit gesprengten Bombenhüllen präsentiert das LZH in Stuttgart zudem erste Ergebnisse aus einem Forschungsprojekt zur zivilen Sicherheit.

Auf der diesjährigen LASYS stellt das LZH lichtbasierte Prozesse wie Schneiden, Schweißen, Abtragen und Strukturieren sowie die additive Fertigung für Metalle,...

Im Focus: Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

Um chemische Gemische in ihre Einzelbestandteile aufzutrennen, ist in der Industrie die energieaufwendige Destillation gängig, etwa bei der Raffinerie von Rohöl. Forscher der Technischen Universität Kaiserslautern (TUK) entwickeln ein Kamerasystem, das diesen Prozess überwacht. Dabei misst es, ob es zu einer starken Tropfenbildung kommt, was sich negativ auf die Trennung der Komponenten auswirken kann. Die Technik könnte hier künftig automatisch gegensteuern, wenn sich Messwerte ändern. So ließe sich auch Energie einsparen. Auf der Prozesstechnik-Messe Achema in Frankfurt stellen sie die Technik vom 11. bis 15. Juni am Forschungsstand des Landes Rheinland-Pfalz (Halle 9.2, Stand A86a) vor.

Bei der Destillation werden Flüssigkeiten durch Verdampfen und darauffolgende Kondensation des Dampfes in ihre Bestandteile getrennt. Ein bekanntes Beispiel...

Im Focus: Vielseitige Nanokugeln: Forscher bauen künstliche Zellkompartimente als molekulare Werkstatt

Wie verleiht man Zellen neue Eigenschaften ohne ihren Stoffwechsel zu behindern? Ein Team der Technischen Universität München (TUM) und des Helmholtz Zentrums München veränderte Säugetierzellen so, dass sie künstliche Kompartimente bildeten, in denen räumlich abgesondert Reaktionen ablaufen konnten. Diese machten die Zellen tief im Gewebe sichtbar und mittels magnetischer Felder manipulierbar.

Prof. Gil Westmeyer, Professor für Molekulare Bildgebung an der TUM und Leiter einer Forschungsgruppe am Helmholtz Zentrum München, und sein Team haben dies...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

22. Business Forum Qualität: Vom Smart Device bis zum Digital Twin

22.05.2018 | Veranstaltungen

48V im Fokus!

21.05.2018 | Veranstaltungen

„Data Science“ – Theorie und Anwendung: Internationale Tagung unter Leitung der Uni Paderborn

18.05.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Faserlaser mit einstellbarer Wellenlänge

23.05.2018 | Physik Astronomie

LZH zeigt Lasermaterialbearbeitung von morgen auf der LASYS 2018

23.05.2018 | Messenachrichten

Achema 2018: Neues Kamerasystem überwacht Destillation und hilft beim Energiesparen

23.05.2018 | Messenachrichten

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics