Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Festkörperlaser vs. Gaslaser – moderne Produktionslasertechnologie für Powertrain-Komponenten

22.06.2016

Schaute man vor einigen Jahren in die Werkshallen der großen Hersteller, so wurde die Schweißtechnologie noch von der CO2-Lasertechnik dominiert. Riesige Anlagen, die in eigenen Räumen, abgetrennt von der eigentlichen Produktion in der Werkhalle, aufgebaut waren, lieferten die Energie für die damals noch junge Laserschweißtechnologie. Seither ist die Entwicklung nicht stehen geblieben. Moderne Anlagen setzen zunehmend auf Festkörperlaser, die viele entscheidende Vorteile bringen.

Menschen, die es ganz genau wissen müssen, da sie sich tagtäglich mit Lasertechnologie auseinandersetzen, sitzen im beschaulichen Heubach, dem Sitz von EMAG Automation, wenige Kilometer von Schwäbisch Gmünd entfernt.


Arbeitsraum der Laserschweißmaschine ELC 160 für das Schweißen von Getrieberädern. An bis zu drei Stationen wird das Zahnrad erwärmt, gefügt und lasergeschweißt.


Laserschweißen eines Synchronrads auf ein Zahnrad. Halbierte Betriebskosten durch den neuen Faserlaser in der ELC 160.


Lasergeschweißtes Getrieberad


Die ELC 250 DUO – kompakte Laserbearbeitungsmaschine für die Bearbeitung von Differentialgehäusen. Die als Duo-Variante konzipierte ELC ist doppelspindlig ausgeführt. Dieser Zwei-Stationen-Betrieb ermöglicht ein hauptzeitparalleles Be- und Entladen der Arbeitsspindeln


Durch das Laserschweißen des Ausgleichsgetriebegehäuses und des Tellerrads konnte das Gewicht des Bauteils um rund 1,2 Kilo gesenkt werden.

„Wir haben ab 2008 damit begonnen, Festkörperlaser auf unseren Anlagen einzusetzen, da die Vorteile gegenüber den älteren CO2-Lasern einfach überwältigend sind“, betont Dr. Andreas Mootz, Geschäftsführer von EMAG Automation GmbH.

„Wir waren ganz sicher die Pioniere, die den Festkörperlaser beim Schweißen von Präzisionsteilen wie Getriebekomponenten ,salonfähig‘ gemacht haben. Die Anforderungen speziell an die Anlagen- und Prozesstechnik und insbesondere die Anforderungen an die Spann- und Vorrichtungstechnik sind sehr viel höher als beim CO2-Laser.“

Vorteil 1: Niedrigere Betriebskosten

Betrachtet man die Betriebskosten von Laserschweißanlagen, kommen vor allem zwei Komponenten zum Tragen: der Energieverbrauch des Lasers und die Kosten für das Gas. Beim Gas unterscheidet man dabei zwischen dem Lasergas (Lasermedium) und dem Schutzgas für die Stabilisierung des Schweißvorganges. Neben dem Gasverbrauch verursacht vor allem die aufwendige Gaslogistik bei der Anlagenplanung und dem Schweißvorgang erhebliche Kosten – Kosten, die beim Einsatz von Festkörperlasern, wie dem Scheiben- oder Faserlaser, komplett entfallen. Auf den EMAG Anlagen wird bei den meisten Anwendungen Druckluft als Prozessgas eingesetzt, was zwar zu einer dünnen Oxidschicht auf der Nahtoberfläche führt, aber die Schweißnähte in ihrer Qualität nicht beeinflusst.

Auch beim Energieverbrauch muss sich der CO2-Laser dem Festkörperlaser geschlagen geben. Um 4 kW Laserleistung zu erzeugen, muss beim CO2-Laser 56 kW elektrischer Strom eingesetzt werden, beim Festkörperlaser lediglich 17 kW, was einer Energieeinsparung von 70 Prozent entspricht. Zudem muss eine viel niedrigere Kühlleistung erbracht werden. Wenn man diese Einsparungen noch hinzuzählt, sinkt der Energieverbrauch eines Festkörperlasers auf lediglich ein Viertel im Vergleich zum Energieverbrauch eines CO2-Lasers mit gleicher Ausgangsleistung.

Vorteil 2: Anlagenlayout

Laserschweißanlagen arbeiten häufig mit kurzen Taktzeiten im Bereich weniger Sekunden und erlauben einen riesigen Teiledurchsatz. Ihre Einbindung in den Materialfluss in der Fertigung ist daher wichtig.

Bei CO2-Laseranlagen erfolgt die Strahlführung, d.h. der „Transport“ des Laser-strahls zur Schweißoptik, über Spiegelsysteme. Strahlquelle, Kühlaggregate und Bearbeitungsstation(en) müssen daher eng beieinander angeordnet werden. Daraus ergeben sich verschiedene Nachteile, wie z.B. der aufwendige Zu- und Abtransport der zu schweißenden Teile, welche die Versorgung mehrerer Schweißstationen mit derselben Laserquelle zur Herausforderung machen. Bei Scheiben- oder Faserlaser-Schweißanlagen bestehen diese Probleme praktisch nicht, da der Platzbedarf so gering ist, dass sie sich mühelos in bestehende Fertigungslinien integrieren lassen. Die eigentliche Laserquelle kann dabei bis zu 50 Meter entfernt von der Anlage stehen, da die Strahlführung dank der Transportfasern vergleichsweise einfach zu gestalten ist. Dadurch können die Schweißstationen optimal in den Materialfluss integriert werden.

Vorteil 3: Qualität und Geschwindigkeit

Sinkende Kosten und günstigeres Anlagenlayout sind ja schön und gut, aber kann sich die Qualität der Schweißnähte auch mit der eines CO2-Lasers messen? Um es kurz zu sagen, ja. In vielen Anwendungen kann sogar die Schweißgeschwindigkeit erhöht werden. Dadurch werden sowohl der Wärmeverzug des Werkstücks als auch die Taktzeit reduziert.

Zusammenfassend lässt sich sagen, dass die Faserlaser- / Scheibenlasertechnik effizienter als die CO2-Lasertechnik ist und eine höhere Schweißgeschwindigkeit bietet. Somit erfüllen die Scheiben- oder Faserlaser vollständig die heutigen Anforderungen bei der Komponentenfertigung für kraftstoffsparende und leichtgewichtige Kraftfahrzeuge.

Kein Laser ohne Schatten

Bis hier spricht alles für den Einsatz von Festkörperlasern, doch gibt es auch Nachteile? „Von Nachteilen gegenüber CO2-Lasern kann man eigentlich nicht sprechen, eher von Herausforderungen, die es zu meistern gilt“, erklärt Dr. Mootz. „So erfordert der Einsatz von Festkörperlasern eine deutlich höhere Präzision als bisher. Eine Strahlpositionsgenauigkeit von unter 50 Mikrometern stellt höchste Anforderungen an Maschine, Werkstückaufnahmen und  Spannmittel sowie an die Fokuslage und Ausrichtung der Laseroptik.“ Anforderungen, die EMAG mit den ELC-Anlagen voll erfüllt. Betrachtet man z.B. die Schweißspritzer, die durch den Einsatz der Festkörperlaser vermehrt entstehen, so ist der Einsatz von perfekt abgestimmten Werkzeugen notwendig, die das Bauteil optimal abdecken. Bei der Bearbeitung verschiedener Bauteile stellt sich hier also die Frage nach einer möglichst schnellen Umrüstzeit, für die EMAG bei der ELC 160 eine einfache, aber effiziente Lösung gefunden hat. So ist die Anlage mit einer Werkzeugbrücke mit bis zu drei verschiedenen Werkzeugsätzen nebst integrierter Rauchgasabsaugung ausgerüstet, die ein automatisches Umrüsten in wenigen Sekunden ermöglicht – ideal für die hochflexible und hochproduktive Fertigung von Getriebeteilen in großer Ausbringungsmenge.

Es zeigt sich, der Einsatz von Festkörperlasern auf Produktionslaserschweißanlagen zur Herstellung von Powertrain-Komponenten  ist praktisch alternativlos. Dennoch bedarf deren Einsatz ein gehöriges Expertenwissen, um die Vorteile in einem hocheffizienten Lasersystem wie den Anlagen der ELC-Baureihe von EMAG zu bündeln. Eine Herausforderung, der sich die Experten in Heubach täglich mit Erfolg stellen.

Faktenblatt und Infos:

Fachbegriffe:

LASER – Laser ist ein Kürzel und steht für Light Amplification by Stimulated Emission of Radiation. Dabei besteht ein Laser aus drei wichtigen Bestandteilen, dem Lasermedium (z.B. CO2 oder Kristalle), dessen Atome und Moleküle durch die Pumpe, dem zweiten wichtigen Bestandteil eines Lasers, in einen energetisch günstigeren Zustand versetzt werden. Der dritte Bestandteil eines jeden Lasers ist der Resonator, der letztendlich dafür sorgt, dass die im Lasermedium entstandenen hochenergetischen Photonen das Material verlassen, was letztendlich den eigentlichen Laserstrahlt darstellt.

Schweißspritzer –  Unter Schweißspritzern versteht man, wenn sich Kleinstpartikel beim Schweißvorgang aus dem Werkstück herauslösen und auf der Oberfläche verteilen. Dies beeinträchtigt die Qualität des Werkstücks und sollte daher weitgehend vermieden werden.

Pumpen –  Unter dem Pumpen versteht man das Anregen der Elektronen eines Lasermediums auf ein höheres Energieniveau. Dies geschieht i.d.R. durch Strahlung, wie z.B. einer Laserdiode.

Festkörperlaser – Unter Festkörperlasern versteht man die Art von Lasern, bei denen das Lasermedium ein fester Körper ist. Dies können Kristalle oder Glas sein, das mit fremden Ionen versetzt ist. Siehe auch CO2-Laser.

Laserdiode – Die Laserdiode ist die Basis der Pumpe, in der die Energie für die Pumpenstrahlung in den gewünschten Wellenlängen erzeugt wird. Laserdioden haben sich als Energiequelle durchgesetzt, da sie im Vergleich zu anderen optischen Medien, wie z.B. der Bogenlampe, eine viel höhere Lebensdauer und höhere Wirkungsgrade erreichen. 

CO2-Laser – Beim CO2-Laser ist das Lasermedium, analog zum Festkörperlaser, das Gas Co2.

Scheibenlaser  Der Scheibenlaser ist ein Festkörperlaser, dessen Resonator ein scheibenförmiger Kristall ist. Um eine möglichst hohe Absorption der durch das Pumpen eingebrachten Energie zu erreichen, wird die Pumpstrahlung mehrfach durch die Scheibe geleitet.

Faserlaser – Der Faserlaser besteht, wie der Name schon sagt, aus einer Glasfaser, die als Lasermedium dient. Die Pumpenergie wird durch die Glasfaser geleitet, wodurch die Laserstrahlung entsteht.

Ansprechpartner Presse und Veröffentlichung

Markus Isgro

EMAG GmbH& Co. KG

Austraße 24

D-73084 Salach

Tel.: +49(0)7162/17-4658

Fax: +49(0)7162/17-199

Email: misgro@emag.com

www.emag.com

Markus Isgro | EMAG GmbH & Co. KG

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau
28.04.2017 | Technische Universität Chemnitz

nachricht Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten
27.04.2017 | EMAG eldec Induction GmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: TU Chemnitz präsentiert weltweit einzigartige Pilotanlage für nachhaltigen Leichtbau

Wickelprinzip umgekehrt: Orbitalwickeltechnologie soll neue Maßstäbe in der großserientauglichen Fertigung komplexer Strukturbauteile setzen

Mitarbeiterinnen und Mitarbeiter des Bundesexzellenzclusters „Technologiefusion für multifunktionale Leichtbaustrukturen" (MERGE) und des Instituts für...

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Internationaler Tag der Immunologie - 29. April 2017

28.04.2017 | Veranstaltungen

Kampf gegen multiresistente Tuberkulose – InfectoGnostics trifft MYCO-NET²-Partner in Peru

28.04.2017 | Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Über zwei Millionen für bessere Bordnetze

28.04.2017 | Förderungen Preise

Symbiose-Bakterien: Vom blinden Passagier zum Leibwächter des Wollkäfers

28.04.2017 | Biowissenschaften Chemie

Wie Pflanzen ihre Zucker leitenden Gewebe bilden

28.04.2017 | Biowissenschaften Chemie