Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Feinfühliges Folienhandling

01.06.2009
Automatische Montageanlagen für Photovoltaik-Module

Weltweit wetteifern Techniker darum, die Effizienz von Solaranlagen zu erhöhen - bei gleichzeitiger Reduzierung der Herstellungskosten. Ein Ansatz hierfür ist die Verringerung der Schichtstärke der Solarzellen.

Die extrem dünnen Scheiben stellen allerdings höchste Anforderungen an das Prozess-Know-how der Anlagenhersteller und Betreiber. MiniTec ist es gelungen, die Montagequalität bei kürzeren Taktzeiten zu optimieren.

Es scheint paradox - obwohl Sonnenenergie in grenzenlosen Mengen kostenlos verfügbar ist, stellt der Bau und wirtschaftliche Betrieb von Solaranlagen die Betreiber vor große Herausforderungen. Rund 90 Prozent aller Photovoltaikanlagen produzieren ihren Strom mit monokristallinen oder polykristallinen Siliziumzellen, die bereits einen Wirkungsgrad von fast 20 Prozent erreichen.

Alternativen sind Dünnschicht-Module, bei denen eine dünne Halbleiterschicht auf ein Trägermaterial aufgedampft wird oder organische Solarzellen. Diese Techniken befinden sich allerdings noch im Entwicklungsstadium oder haben eine deutlich geringere Leistungsfähigkeit. Um den Vorteil des hohen Wirkungsgrades zu erhalten, werden große Anstrengungen unternommen, um die Kosten für Module mit kristallinen Solarzellen zu senken.

Ein Ansatz zur Kostenreduzierung ist die Verringerung der Schichtstärke der Solarzellen. Die extrem dünnen Scheiben mit einer Stärke von nur noch 160 Mikrometer stellen höchste Anforderungen an das Prozess-Know-how der Anlagenhersteller und Betreiber. Die Bruchrate der Zellen in der Montage ist ein wesentliches Qualitäts- und Kostenkriterium bei ständig kürzeren Taktzeiten. Es bedarf anspruchsvoller Montageanlagen, deren Konzipierung große Kompetenz in der Solar- und Montagetechnik voraussetzt.

Einer der führenden Anbieter solcher Lösungen ist der Maschinenbauer MiniTec, der bereits seit zehn Jahren erfolgreich in dieser Branche aktiv ist. Die Montagelösungen des Herstellers aus Waldmohr basieren auf dem flexiblen Profil-Baukastensystem. Der strikt modulare Aufbau dieses Systems mit durchgängig gleichem Rastermaß und gleicher Nutform machen Anlagenerweiterungen oder Änderungen ohne großen Aufwand möglich. Dank der patentierten Verbindungstechnik, die ohne jede Bearbeitung auskommt und ESD-Fähigkeit sicherstellt, können Anpassungen auch auf der Baustelle oder Einstellarbeiten in kürzester Zeit realisiert werden.

Jede Baugruppe der Solarzellen-Montageanlage ist als autarker Funktionsbaustein konzipiert. Die Bausteine sind grundsätzlich mit fehlersicheren Peripheriebaugruppen ausgestattet, die den Test aller Funktionen eines Anlagenteils bereits bei der Montage ermöglichen.

Im ersten Produktionsschritt werden die Zellen im Stringer mit Lötbändern zu einem Zellenstring verbunden. Diese Strings, die aus zehn bis zwölf Zellen bestehen, werden von dem so genannten Lay-up der MiniTec-Anlage übernommen und exakt auf der Glasplatte, die mit einer EVA-Folie belegt ist, positioniert. Die Glasscheibe muss automatisch in eine sehr präzise Ablageposition gebracht werden, auf die die Strings in korrekter Polarität mit einer Genauigkeit von plus/minus 0,3 Millimeter abgelegt werden.

Das Handling der äußerst empfindlichen Strings erfordert dabei größte Sorgfalt, um Zellenbruch zu vermeiden. Die Vorratsbehälter für Strings werden mit Sensoren überwacht und melden dem Operator leere Behälter, und zwar für jede Polarität getrennt. Bei der optionalen optischen Kontrolle der Strings mit CCD-Kameras auf Beschädigungen einzelner Zellen, auf Außenkonturfehler, Risse und fehlende Lötbänder werden fehlerhafte Strings automatisch entnommen, fehlerhafte ausgesondert und ersetzt. Alle Fehlerdaten werden protokolliert.

Die Produkt- und Fabrikationsdaten werden über Scanner eingelesen. Optional wird ein Etikett erzeugt und auf die Scheibe aufgebracht. Gleichzeitig werden Produktionsdaten erfasst, die für die spätere Identifikation oder ERP-Anbindung erforderlich sind. Diese Daten werden während des gesamten Montageprozesses mitgeführt und vervollständigt.

In einem vorgelagerten Arbeitsschritt werden die Glasscheiben gereinigt, mit EVA-Folie belegt und in einem Glasspeicher für das Lay-up bereitgestellt. Dabei muss die Einlagerungszeit im Speicher strikt überwacht werden, da die empfindliche Folie nicht länger als eine Stunde dem Licht ausgesetzt sein darf. Gleichzeitig muss jede Staubablagerung auf den Scheiben vermieden werden. Die empfindlichen Scheiben dürfen sich während des Transportes und im Speicher nicht durchbiegen und müssen erschütterungsfrei transportiert werden. Ein- und Auslagerung der Scheiben erfolgt vollautomatisch nach FIFO oder LIFO-Prinzip - je nach Erfordernis der folgenden Operationen.

Zwischen den Bearbeitungsstationen erfolgt der Transport auf speziellen, mehrspurigen Förderanlagen, die mit extra breiten, staubfrei beschichteten Zahnriemen bestückt sind. Die Beschichtung garantiert rutschsicheren Halt während des Transports. Für spezielle Anwendungen werden die Förderer mit hochtemperaturfesten Gurten bis 200 Grad Celsius geliefert. Für den Quertransport der Scheiben, Laminate oder Module stehen zahlreiche Varianten zur Verfügung, die je nach Aufgabenstellung zur Anwendung kommen.

In den Transportstrecken werden bei Bedarf Wendestationen integriert, um die Module für die folgende Operation lagegerecht beizustellen. Auch für diese Stationen gelten die gleichen Bedingungen für äußerst schonendes Handling.

Nach dem Lay-up erfolgt das Querverschalten der Strings. Diese Operation wird häufig noch manuell ausgeführt, in Ausnahmefällen auch mit Robotern. Nach dieser Operation werden die Scheiben im Laminator mit den EVA-Folien und den Rückseitenfolien zu Laminaten verbacken und beschnitten.

Die überwiegende Mehrzahl der Photovoltaik-Module wird mit Rahmen montiert. Dazu werden an allen vier Seiten des Laminats zuerst Dichtungsstreifen oder Paste aufgebracht, bevor es mit einem Portalroboter oder einem speziellen Riemenförderer in die Presse eingelegt wird. Die vier Seitenprofile aus Aluminium werden anschließend auf das Laminat mit exakt dosiertem Druck aufgepresst und gegebenenfalls verschraubt. Eine ungenaue Pressung oder zu hoher Druck führen bei den empfindlichen Glasscheiben leicht zu Bruch. Eine äußerst sensible Steuerung der Anlage ist für diesen Prozess unbedingte Voraussetzung. PR/pb

| handling
Weitere Informationen:
http://www.handling.de/xist4c/web/Feinfuehliges-Folienhandling_id_882__dId_429920_.htm

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die schnellste lichtgetriebene Stromquelle der Welt

Die Stromregelung ist eine der wichtigsten Komponenten moderner Elektronik, denn über schnell angesteuerte Elektronenströme werden Daten und Signale übertragen. Die Ansprüche an die Schnelligkeit der Datenübertragung wachsen dabei beständig. In eine ganz neue Dimension der schnellen Stromregelung sind nun Wissenschaftler der Lehrstühle für Laserphysik und Angewandte Physik an der Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) vorgedrungen. Ihnen ist es gelungen, im „Wundermaterial“ Graphen Elektronenströme innerhalb von einer Femtosekunde in die gewünschte Richtung zu lenken – eine Femtosekunde entspricht dabei dem millionsten Teil einer milliardstel Sekunde.

Der Trick: die Elektronen werden von einer einzigen Schwingung eines Lichtpulses angetrieben. Damit können sie den Vorgang um mehr als das Tausendfache im...

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: Effizientere und präzisere Kontakte dank Roboter-Kollaboration

Auf der diesjährigen productronica in München stellt das Fraunhofer-Institut für Lasertechnik ILT das Laser-Based Tape-Automated Bonding, kurz LaserTAB, vor: Die Aachener Experten zeigen, wie sich dank neuer Optik und Roboter-Unterstützung Batteriezellen und Leistungselektronik effizienter und präziser als bisher lasermikroschweißen lassen.

Auf eine geschickte Kombination von Roboter-Einsatz, Laserscanner mit selbstentwickelter neuer Optik und Prozessüberwachung setzt das Fraunhofer ILT aus Aachen.

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Im Spannungsfeld von Biologie und Modellierung

26.09.2017 | Veranstaltungen

Archaeopteryx, Klimawandel und Zugvögel: Deutsche Ornithologen-Gesellschaft tagt an der Uni Halle

26.09.2017 | Veranstaltungen

Unsere Arbeitswelt von morgen – Polarisierendes Thema beim 7. Unternehmertag der HNEE

26.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Europas erste Testumgebung für selbstfahrende Züge entsteht im Burgenland

26.09.2017 | Verkehr Logistik

Nerven steuern die Bakterienbesiedlung des Körpers

26.09.2017 | Biowissenschaften Chemie

Mit künstlicher Intelligenz zum chemischen Fingerabdruck

26.09.2017 | Biowissenschaften Chemie