Erosives Drehen macht das Erodieren für die Medizintechnik wirtschaftlicher

Die Medizintechnik ist eine Wachstumsbranche. Schon heute stellen rund 16 000 Unternehmen rund 10 000 Produkte für den medizintechnischen Markt her und das Wachstum geht steil nach oben.

Insbesondere ist davon auszugehen, dass speziell die Tendenz zur Miniaturisierung fortschreitet. Dabei stellen sich immer wieder Fragen nach der Vereinfachung des Herstellungsprozesses oder schlicht und einfach, ob solche Produkte überhaupt prozesssicher hergestellt werden können. Oft sind dafür Fertigungsverfahren der Mikrobearbeitung gefragt und genau hier ist die funkenerosive Bearbeitungsmethode prädestiniert, beispielsweise das erosive Drehen.

Toleranzen von 0,001 mm sind keine Seltenheit

Ultrapräzise Spannmittel, hochgenaue Rundteiltische und Rotierspindeln helfen, die Genauigkeitsanforderungen der Branche zu erfüllen, um Gelenkimplantate, Zahnimplantate, Teile für Mikropumpen und Biopsiegeräte, Nadeln für die Hirnchirurgie oder Produkte für das Venenfräsen und Herzschrittmacher in höchster Qualität herzustellen. Bei vielen dieser Teile sind Toleranzen von 0,001 mm keine Seltenheit.

Höchste Präzision ist die eine Seite, Wirtschaftlichkeit die andere. In Zusammenarbeit mit Medizintechnikunternehmen und Instituten entwickeln die Konstrukteure von Hirschmann laufend Spannmittel und Mehrfachaufnahmen für die wirtschaftliche funkenerosive Bearbeitung und auch das Fräsen von Medizinteilen. Oft handelt es sich um komplizierte und empfindliche Teile, die nicht mit standardisierten Spannmitteln aufgenommen werden können (Bild 2).

Gelenkimplantate werden mit Drahterodiermaschinen hergestellt

Das hauptzeitparallele Aufnehmen und Voreinstellen außerhalb der Werkzeugmaschine und das Bearbeiten einer Vielzahl von Teilen in einer Aufspannung senkt die Herstellkosten spürbar. Bei der Umsetzung solcher Anforderungen hilft auch lange Erfahrung mit Standardspannsystemen in den Bereichen der Senkerosion und Drahterosion sowie des HSC-Fräsens oder des Wasserstrahlschneidens. Dabei wird stets Wert darauf gelegt werden, dass solche Fertigungslösungen auch automatisierbar sind.

Mit Drahterodiermaschinen, die zu den genauesten Bearbeitungsmaschinen überhaupt zählen, stellt in Verbindung mit einer A-Achse eine Reihe von namhaften Unternehmen beispielsweise Gelenkimplantate her. Die Rohlinge werden mittels Spann- oder Palettiersystemen aufgespannt. Die A-Achse wird dann als sechste Achse simultan von der Drahterodiermaschine gesteuert (Bild 3). Im Englischen wird dafür der Ausdruck „turn while burn“ verwendet. Hinsichtlich von Kontur und Form der Teile bleiben dabei kaum Wünsche übrig.

Direktmesssystem kontrolliert Achsdrehung

Um die geforderten Fertigungsgenauigkeiten der Medizintechnik zu erreichen, werden alle A-Achsen mit einem Direktmesssystem ausgestattet, das Teilgenauigkeiten von bis zu ±2,5 Winkelsekunden ermöglicht. Um diese Genauigkeitsklasse zu verdeutlichen, wird folgendes Anwendungsbeispiel angeführt: Bei einem Werkstück von 180 mm Durchmesser beträgt die Abweichung bei der Indexierung maximal ±0,001 mm. Die A-Achse kann mit einem pneumatisch bedienbaren Futter ausgestattet werden, so dass der Fertigungsprozess automatisiert ablaufen kann.

Im Zusammenspiel einer Drahterodiermaschine und einer zusätzlichen Rotationsachse eröffnen sich mannigfaltige Möglichkeiten für die Herstellung rotationssymmetrischer Teile. Die zu bearbeitenden Rohlinge werden dabei in die Rotierspindel aufgenommen. Bei Drehzahlen bis zu 1500 min-1 kann nun mit dem Draht der Erodiermaschine jede beliebige Kontur an dem rotierenden Teil hergestellt werden.

Hohe Oberflächengüte beim erosiven Drehen

Die Vorteile des sogenannten erosiven Drehens liegen in der Oberflächengüte und besonders auch darin, dass filigrane Teile prozesssicher hergestellt werden können, weil bei dieser Fertigungsmethode kein seitlicher Bearbeitungsdruck entsteht, wie zum Beispiel beim Rundschleifen. Definierte Stege, Spitzen, Scheiben oder Kugeln im Bereich von Millimetern bis zu wenigen Mikrometern sind mit einer hohen Oberflächenqualität realisierbar.

Um diese Ergebnisse erzielen zu können, hilft außer der Rundlaufgenauigkeit der Spindel ein patentiertes Spannsystem für runde Teile, das eine Ausrichtung von Rundlauf und Taumel nahezu auf null ermöglicht (Bild 4). Typische Anwendungsbeispiele des erosiven Drehens in der Medizintechnik sind die Herstellung von Nadeln für die Hirnchirurgie, von Bauteilen für Herzschrittmacher, von Werkzeugen für das Venenfräsen sowie Biopsiegeräte, aber auch die Fertigung von Formkernen und Ausstoßerstiften für das Mikrospritzgießen zur Herstellung medizinischer Geräte oder Produkte. Bei dieser Kombination von Drehen und Erodieren ist der Werkstückwechsel ebenfalls automatisierbar.

Jüngste Entwicklung auf dem Gebiet des erosiven Drehens ist eine kombinierte Rotier- und Positionierspindel. Sie ermöglicht nicht nur ein erosives Drehen, in der gleichen Aufspannung können auch Flächen angeschnitten werden (Bild 5). Das erhöht die Wirtschaftlichkeit.

Dipl.-Kfm. Horst Schneider ist kaufmännischer Geschäftsführer der Hirschmann GmbH in Fluorn-Winzeln.

Media Contact

Horst Schneider MM MaschinenMarkt

Alle Nachrichten aus der Kategorie: Maschinenbau

Der Maschinenbau ist einer der führenden Industriezweige Deutschlands. Im Maschinenbau haben sich inzwischen eigenständige Studiengänge wie Produktion und Logistik, Verfahrenstechnik, Fahrzeugtechnik, Fertigungstechnik, Luft- und Raumfahrttechnik und andere etabliert.

Der innovations-report bietet Ihnen interessante Berichte und Artikel, unter anderem zu den Teilbereichen: Automatisierungstechnik, Bewegungstechnik, Antriebstechnik, Energietechnik, Fördertechnik, Kunststofftechnik, Leichtbau, Lagertechnik, Messtechnik, Werkzeugmaschinen, Regelungs- und Steuertechnik.

Zurück zur Startseite

Kommentare (0)

Schreiben Sie einen Kommentar

Neueste Beiträge

Ideen für die Zukunft

TU Berlin präsentiert sich vom 22. bis 26. April 2024 mit neun Projekten auf der Hannover Messe 2024. Die HANNOVER MESSE gilt als die Weltleitmesse der Industrie. Ihr diesjähriger Schwerpunkt…

Peptide auf interstellarem Eis

Dass einfache Peptide auf kosmischen Staubkörnern entstehen können, wurde vom Forschungsteam um Dr. Serge Krasnokutski vom Astrophysikalischen Labor des Max-Planck-Instituts für Astronomie an der Universität Jena bereits gezeigt. Bisher ging…

Wasserstoff-Produktion in der heimischen Garage

Forschungsteam der Frankfurt UAS entwickelt Prototyp für Privathaushalte: Förderzusage vom Land Hessen für 2. Projektphase. Wasserstoff als Energieträger der Zukunft ist nicht frei verfügbar, sondern muss aufwendig hergestellt werden. Das…

Partner & Förderer