Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ematalieren schützt Aluminiumteile besser als andere Oxidierverfahren

03.12.2009
Beim Oberflächenschutz für Aluminiumteile kann das Hartematalieren im Vergleich zu anderen Oxidierverfahren punkten. Voraussetzung sind hohe Maßhaltigkeit und dichte Struktur der harten Oberfläche. Sie ist die Basis für eine niedrige Rauheit, wodurch bei Ventilgehäusen eine aufwändige Schmierung entfällt.

Das anodische Verfahren Ematalieren/Hartematalieren verleiht Funktionsteilen aus Aluminium einen dauerhaften Oberflächenschutz gegen Korrosion und Verschleiß. Das verdeutlicht der Schweizer Verfahrensspezialist BWB Betschart, Schlieren, der damit kratzfeste und harte Schutzschichten erzeugt, die hinsichtlich der Mohs‘schen Härteskala zwischen 7 und 8 liegen.

Als weitere positive Merkmale werden die hohe Maßhaltigkeit, die geringe Rauheit und damit das gute Gleitverhalten hervorgehoben. Dieses Eigenschaftsprofil prädestiniert das Verfahren für den Oberflächenschutz von Aluminiumteilen in stark beanspruchten Pneumatikventilen der Eugen Seitz AG, Wetzikon/Schweiz. Diese Ventile arbeiten ohne aufwändige Schmierung in unterschiedlichen industriellen Anwendungen.

Ohne Oberflächenschutz nutzt sich Aluminium schnell ab

Pneumatikventile sind wichtige Funktionskomponenten in der Automatisierungstechnik. So werden die Ventile des Herstellers Seitz als Hochdruckmagnetventile und -ventilblöcke hergestellt: für Erdgasspeicher, Erdgas- und Wasserstoff-Betankungsanlagen, magnetgesteuerte Ventile für Hohlkörperblasmaschinen, die Chemie- und Kraftwerkstechnik. Häufig sind kundenspezifische Ausführungen erforderlich. So vielfältig die Anwendungen sind, so unterschiedlich ist die Belastung.

Unverändert bleibt dabei jedoch der Basiswerkstoff: Aluminium. Es ist wesentlich leichter als Stahl und hat somit ein niedrigeres Massenträgheitsmoment, was schnellere Bewegungen und eine höhere Nutzlast ermöglicht. Diese Eigenschaften sind wichtig im allgemeinen Maschinenbau, zum Beispiel in Montageanlagen, bei Rotoren, Gleitlagern und Lagerflanschen, Zahnrädern, Kupplungsteilen und Pneumatikkomponenten. Auch bei Geräten der Medizintechnik wird viel Wert auf Leichtbauweise gelegt.

Allerdings benötigt dieses Leichtmetall einen Oberflächenschutz, ohne den es einen erheblichen Nachteil im Vergleich zum härteren Stahl hat: Bei reibender Beanspruchung neigt Aluminium zu adhäsivem Fressen und schneller Abnützung durch Verschleiß. Schutz dagegen bietet laut BWB entweder eine aufwändige Schmierung, die jedoch bei einer Reihe von Anwendungen nicht zulässig ist, zum Beispiel in der Lebensmittel- und Medizintechnik, oder eine Oberflächenbehandlung, wie das Hartanodisieren oder Hartematalieren. Beim Hartematalieren findet eine anodische Umwandlung der Aluminiumoberfläche statt. Zur Anwendung kommt dabei ein titanhaltiger Elektrolyt, der Gleichstrom ausgesetzt wird.

Schutzen von Ventilgehäusen vor Aggressivität verschiedener Medien

Das Ergebnis ist eine glasurartige, glatte und porenfreie Hartematalschicht, die härter als Quarz und Topas ist, wie Messungen beim Ventilhersteller ergaben, der damit vor allem Ventilgehäuse aus der Aluminiumlegierung EN-AW-6082 (Anticorodal 100/112, AlMGSi1) vor Verschleiß und Korrosion schützen lässt. Die Gehäuse werden bei BWB hartemataliert. Die anodisierte Oberfläche liegt in der Mohs‘schen Härteskala zwischen 7 und 8. Das entspricht einer Vickershärte von 300 bis 650 HV0.025. Die Schichtdickentoleranz wird mit ±3 µm angegeben. Für den Schweizer Ventilhersteller ist auch die Resistenz gegen die chemische Aggressivität unterschiedlicher gasförmiger Medien wichtig. Schließlich müssen die Ventile den Durchfluss verschiedener gasförmiger Medien steuern.

Oberflächen erhalten opak wirkenden Farbton

Das Ematalieren ist nicht neu. Es wurde bereits vor mehr als 50 Jahren an der Eidgenössischen Technischen Hochschule in Zürich vorgestellt, im Rahmen einer Dissertation. Ein besonderer Entwicklungsschwerpunkt galt damals den gleitfreudigen und korrosionsbeständigen Oberflächen von Aluminiumteilen. In den Jahrzehnten danach wurde es zunächst aufgrund der attraktiven Oberflächenwirkung vor allem für dekorative Zwecke angewendet. Abhängig von der Aluminiumlegierung erhalten die Oberflächen der Bauteile einen opak wirkenden Farbton.

Das Erscheinungsbild lässt sich von Hellbronze über Grau bis zu Olive verändern. Enthält die behandelte Aluminiumlegierung einen hohen Siliziumgehalt, kann die Oberfläche auch dunkelgrau sein. In diesen Jahrzehnten wurde auch die Basis für die heutigen Verfahrensabläufe beim Ematalieren weiterentwickelt, besonders in Richtung technische Nutzbarkeit.

Nach dem Ematalieren besteht die Oberfläche eines Aluminiumteils aus Aluminiumoxid (Al2O3). Sie wirkt thermisch isolierend und ist mit einer Durchschlagsspannung von 35 bis 50 V/µm auch ein elektrischer Isola-tor. Als wichtigen Aspekt hebt BWB hervor, dass die Dicke der Oxidschicht selbst bei kompliziert geformten Teilen wie den Ventilgehäusen nahezu konstant ist. Die behandelte Oberfläche habe überall dieselben Eigenschaften. Dies gelte sowohl für komplexe Bauteilkonturen als auch für verdeckte Oberflächen, zum Beispiel in engen Bohrungen und bei Gewinden. Prinzipiell lässt sich das Ematalieren bei allen eloxierbaren Aluminiumlegierungen, aber auch bei Reinaluminium anwenden. Das ist laut dem Verfahrensspezialist auch bei Gusslegierungen auf Aluminiumbasis der Fall.

Oberflächenschutz unlösbar mit dem Grundwerkstoff verbunden

Weil es sich beim Ematalieren um ein Oxidierverfahren handelt, ist der Oberflächenschutz unlösbar mit dem Grundwerkstoff verbunden. Er kann weder abplatzen noch abblättern. Aluminium hat jedoch keine hohe Härte. Die oxidierte, harte Schicht befindet sich daher auf einem relativ weichen Substrat. Aus diesem Grund empfiehlt der Verfahrensspezialist, punktförmige hohe mechanische Belastungen zu vermeiden. Außerdem ist die Komplettfertigung der Teile sinnvoll. Als Gründe dafür werden die hohe Maßhaltigkeit und die hohe Härte des Oberflächenschutzes herausgestellt: Die oxidierten, harten Oberflächen führten zu einem hohen Werkzeugverschleiß.

Höhere Stromkosten als bei anderen Oxidierverfahren

Der Elektrolyt besteht aus einer Oxalsäurelösung mit Titaniumoxalatzusatz. Die Gleichspannung beträgt bis zu 120 V. Sie ist damit höher als beim Hartanodisieren: beim Erzeugen von GSX-Oberflächen, für das bei gleicher Stromstärke eine Spannung von höchstens 60 V erforderlich ist. Demzufolge fallen natürlich entsprechend höhere Stromkosten an als bei anderen Oxidierverfahren. Dies hält man jedoch für keinen allzu großen Nachteil beim Hartematalieren Beim GSX-Hartanodisieren erstreckt sich der Oxidbereich der Oberfläche auf eine Dicke von etwa 200 µm.

Deutlich niedrigere Aufrauung als beim üblichen Hartanodisieren

Die funktionsentscheidenden Vorteile präsentiert nach Angaben von BWB jedoch das Ematalieren. So habe der Titanoxalat-Oxalsäure-Elektrolyt im Vergleich zum GSX-Elektrolyten eine geringe Rücklösung. Dieser Verfahrensvorteil führe zu einer feinporigeren, kompakteren und dichteren Oberflächenstruktur. Außerdem sei der Korrosionsschutz besser, trotz einer kleineren Schichtdicke von 10 bis 25 µm.

Darüber hinaus bewirkt das GSX-Hartanodisieren eine Oberflächenaufrauung bis zum vierfachen Rz-Wert. Der Grund dafür wird in der Oberfläche bei bis zu 50 µm Tiefe gesehen. Beim Ematalieren liegt der Faktor der Aufrauung maximal beim zweifachen Rz-Wert.

Josef Kraus | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/242116/

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Stresstest über den Wolken
21.06.2017 | Hochschule Osnabrück

nachricht 3D-Druck im Mittelstand etablieren
20.06.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Klima-Satellit: Mit robuster Lasertechnik Methan auf der Spur

Hitzewellen in der Arktis, längere Vegetationsperioden in Europa, schwere Überschwemmungen in Westafrika – mit Hilfe des deutsch-französischen Satelliten MERLIN wollen Wissenschaftler ab 2021 die Emissionen des Treibhausgases Methan auf der Erde erforschen. Möglich macht das ein neues robustes Lasersystem des Fraunhofer-Instituts für Lasertechnologie ILT in Aachen, das eine bisher unerreichte Messgenauigkeit erzielt.

Methan entsteht unter anderem bei Fäulnisprozessen. Es ist 25-mal wirksamer als das klimaschädliche Kohlendioxid, kommt in der Erdatmosphäre aber lange nicht...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: Die Schweiz in Pole-Position in der neuen ESA-Mission

Die Europäische Weltraumagentur ESA gab heute grünes Licht für die industrielle Produktion von PLATO, der grössten europäischen wissenschaftlichen Mission zu Exoplaneten. Partner dieser Mission sind die Universitäten Bern und Genf.

Die Europäische Weltraumagentur ESA lanciert heute PLATO (PLAnetary Transits and Oscillation of stars), die grösste europäische wissenschaftliche Mission zur...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Von Batterieforschung bis Optoelektronik

23.06.2017 | Veranstaltungen

10. HDT-Tagung: Elektrische Antriebstechnologie für Hybrid- und Elektrofahrzeuge

22.06.2017 | Veranstaltungen

„Fit für die Industrie 4.0“ – Tagung von Hochschule Darmstadt und Schader-Stiftung am 27. Juni

22.06.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Radioaktive Elemente in Cassiopeia A liefern Hinweise auf Neutrinos als Ursache der Supernova-Explosion

23.06.2017 | Physik Astronomie

Dünenökosysteme modellieren

23.06.2017 | Ökologie Umwelt- Naturschutz

Makro-Mikrowelle macht Leichtbau für Luft- und Raumfahrt effizienter

23.06.2017 | Materialwissenschaften