Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Ematalieren schützt Aluminiumteile besser als andere Oxidierverfahren

03.12.2009
Beim Oberflächenschutz für Aluminiumteile kann das Hartematalieren im Vergleich zu anderen Oxidierverfahren punkten. Voraussetzung sind hohe Maßhaltigkeit und dichte Struktur der harten Oberfläche. Sie ist die Basis für eine niedrige Rauheit, wodurch bei Ventilgehäusen eine aufwändige Schmierung entfällt.

Das anodische Verfahren Ematalieren/Hartematalieren verleiht Funktionsteilen aus Aluminium einen dauerhaften Oberflächenschutz gegen Korrosion und Verschleiß. Das verdeutlicht der Schweizer Verfahrensspezialist BWB Betschart, Schlieren, der damit kratzfeste und harte Schutzschichten erzeugt, die hinsichtlich der Mohs‘schen Härteskala zwischen 7 und 8 liegen.

Als weitere positive Merkmale werden die hohe Maßhaltigkeit, die geringe Rauheit und damit das gute Gleitverhalten hervorgehoben. Dieses Eigenschaftsprofil prädestiniert das Verfahren für den Oberflächenschutz von Aluminiumteilen in stark beanspruchten Pneumatikventilen der Eugen Seitz AG, Wetzikon/Schweiz. Diese Ventile arbeiten ohne aufwändige Schmierung in unterschiedlichen industriellen Anwendungen.

Ohne Oberflächenschutz nutzt sich Aluminium schnell ab

Pneumatikventile sind wichtige Funktionskomponenten in der Automatisierungstechnik. So werden die Ventile des Herstellers Seitz als Hochdruckmagnetventile und -ventilblöcke hergestellt: für Erdgasspeicher, Erdgas- und Wasserstoff-Betankungsanlagen, magnetgesteuerte Ventile für Hohlkörperblasmaschinen, die Chemie- und Kraftwerkstechnik. Häufig sind kundenspezifische Ausführungen erforderlich. So vielfältig die Anwendungen sind, so unterschiedlich ist die Belastung.

Unverändert bleibt dabei jedoch der Basiswerkstoff: Aluminium. Es ist wesentlich leichter als Stahl und hat somit ein niedrigeres Massenträgheitsmoment, was schnellere Bewegungen und eine höhere Nutzlast ermöglicht. Diese Eigenschaften sind wichtig im allgemeinen Maschinenbau, zum Beispiel in Montageanlagen, bei Rotoren, Gleitlagern und Lagerflanschen, Zahnrädern, Kupplungsteilen und Pneumatikkomponenten. Auch bei Geräten der Medizintechnik wird viel Wert auf Leichtbauweise gelegt.

Allerdings benötigt dieses Leichtmetall einen Oberflächenschutz, ohne den es einen erheblichen Nachteil im Vergleich zum härteren Stahl hat: Bei reibender Beanspruchung neigt Aluminium zu adhäsivem Fressen und schneller Abnützung durch Verschleiß. Schutz dagegen bietet laut BWB entweder eine aufwändige Schmierung, die jedoch bei einer Reihe von Anwendungen nicht zulässig ist, zum Beispiel in der Lebensmittel- und Medizintechnik, oder eine Oberflächenbehandlung, wie das Hartanodisieren oder Hartematalieren. Beim Hartematalieren findet eine anodische Umwandlung der Aluminiumoberfläche statt. Zur Anwendung kommt dabei ein titanhaltiger Elektrolyt, der Gleichstrom ausgesetzt wird.

Schutzen von Ventilgehäusen vor Aggressivität verschiedener Medien

Das Ergebnis ist eine glasurartige, glatte und porenfreie Hartematalschicht, die härter als Quarz und Topas ist, wie Messungen beim Ventilhersteller ergaben, der damit vor allem Ventilgehäuse aus der Aluminiumlegierung EN-AW-6082 (Anticorodal 100/112, AlMGSi1) vor Verschleiß und Korrosion schützen lässt. Die Gehäuse werden bei BWB hartemataliert. Die anodisierte Oberfläche liegt in der Mohs‘schen Härteskala zwischen 7 und 8. Das entspricht einer Vickershärte von 300 bis 650 HV0.025. Die Schichtdickentoleranz wird mit ±3 µm angegeben. Für den Schweizer Ventilhersteller ist auch die Resistenz gegen die chemische Aggressivität unterschiedlicher gasförmiger Medien wichtig. Schließlich müssen die Ventile den Durchfluss verschiedener gasförmiger Medien steuern.

Oberflächen erhalten opak wirkenden Farbton

Das Ematalieren ist nicht neu. Es wurde bereits vor mehr als 50 Jahren an der Eidgenössischen Technischen Hochschule in Zürich vorgestellt, im Rahmen einer Dissertation. Ein besonderer Entwicklungsschwerpunkt galt damals den gleitfreudigen und korrosionsbeständigen Oberflächen von Aluminiumteilen. In den Jahrzehnten danach wurde es zunächst aufgrund der attraktiven Oberflächenwirkung vor allem für dekorative Zwecke angewendet. Abhängig von der Aluminiumlegierung erhalten die Oberflächen der Bauteile einen opak wirkenden Farbton.

Das Erscheinungsbild lässt sich von Hellbronze über Grau bis zu Olive verändern. Enthält die behandelte Aluminiumlegierung einen hohen Siliziumgehalt, kann die Oberfläche auch dunkelgrau sein. In diesen Jahrzehnten wurde auch die Basis für die heutigen Verfahrensabläufe beim Ematalieren weiterentwickelt, besonders in Richtung technische Nutzbarkeit.

Nach dem Ematalieren besteht die Oberfläche eines Aluminiumteils aus Aluminiumoxid (Al2O3). Sie wirkt thermisch isolierend und ist mit einer Durchschlagsspannung von 35 bis 50 V/µm auch ein elektrischer Isola-tor. Als wichtigen Aspekt hebt BWB hervor, dass die Dicke der Oxidschicht selbst bei kompliziert geformten Teilen wie den Ventilgehäusen nahezu konstant ist. Die behandelte Oberfläche habe überall dieselben Eigenschaften. Dies gelte sowohl für komplexe Bauteilkonturen als auch für verdeckte Oberflächen, zum Beispiel in engen Bohrungen und bei Gewinden. Prinzipiell lässt sich das Ematalieren bei allen eloxierbaren Aluminiumlegierungen, aber auch bei Reinaluminium anwenden. Das ist laut dem Verfahrensspezialist auch bei Gusslegierungen auf Aluminiumbasis der Fall.

Oberflächenschutz unlösbar mit dem Grundwerkstoff verbunden

Weil es sich beim Ematalieren um ein Oxidierverfahren handelt, ist der Oberflächenschutz unlösbar mit dem Grundwerkstoff verbunden. Er kann weder abplatzen noch abblättern. Aluminium hat jedoch keine hohe Härte. Die oxidierte, harte Schicht befindet sich daher auf einem relativ weichen Substrat. Aus diesem Grund empfiehlt der Verfahrensspezialist, punktförmige hohe mechanische Belastungen zu vermeiden. Außerdem ist die Komplettfertigung der Teile sinnvoll. Als Gründe dafür werden die hohe Maßhaltigkeit und die hohe Härte des Oberflächenschutzes herausgestellt: Die oxidierten, harten Oberflächen führten zu einem hohen Werkzeugverschleiß.

Höhere Stromkosten als bei anderen Oxidierverfahren

Der Elektrolyt besteht aus einer Oxalsäurelösung mit Titaniumoxalatzusatz. Die Gleichspannung beträgt bis zu 120 V. Sie ist damit höher als beim Hartanodisieren: beim Erzeugen von GSX-Oberflächen, für das bei gleicher Stromstärke eine Spannung von höchstens 60 V erforderlich ist. Demzufolge fallen natürlich entsprechend höhere Stromkosten an als bei anderen Oxidierverfahren. Dies hält man jedoch für keinen allzu großen Nachteil beim Hartematalieren Beim GSX-Hartanodisieren erstreckt sich der Oxidbereich der Oberfläche auf eine Dicke von etwa 200 µm.

Deutlich niedrigere Aufrauung als beim üblichen Hartanodisieren

Die funktionsentscheidenden Vorteile präsentiert nach Angaben von BWB jedoch das Ematalieren. So habe der Titanoxalat-Oxalsäure-Elektrolyt im Vergleich zum GSX-Elektrolyten eine geringe Rücklösung. Dieser Verfahrensvorteil führe zu einer feinporigeren, kompakteren und dichteren Oberflächenstruktur. Außerdem sei der Korrosionsschutz besser, trotz einer kleineren Schichtdicke von 10 bis 25 µm.

Darüber hinaus bewirkt das GSX-Hartanodisieren eine Oberflächenaufrauung bis zum vierfachen Rz-Wert. Der Grund dafür wird in der Oberfläche bei bis zu 50 µm Tiefe gesehen. Beim Ematalieren liegt der Faktor der Aufrauung maximal beim zweifachen Rz-Wert.

Josef Kraus | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/oberflaechentechnik/articles/242116/

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

58 europäische Industrie- und Forschungspartner aus 11 Ländern forschten unter der Leitung des VIRTUAL VEHICLE drei Jahre lang, um Europas führende Position im Bereich Embedded Systems und dem Internet of Things zu stärken. Die Ergebnisse von DEWI (Dependable Embedded Wireless Infrastructure) wurden heute in Graz präsentiert. Zu sehen war eine Fülle verschiedenster Anwendungen drahtloser Sensornetzwerke und drahtloser Kommunikation – von einer Forschungsrakete über Demonstratoren zur Gebäude-, Fahrzeug- oder Eisenbahntechnik bis hin zu einem voll vernetzten LKW.

Was vor wenigen Jahren noch nach Science-Fiction geklungen hätte, ist in seinem Ansatz bereits Wirklichkeit und wird in Zukunft selbstverständlicher Teil...

Im Focus: Weltweit einzigartiger Windkanal im Leipziger Wolkenlabor hat Betrieb aufgenommen

Am Leibniz-Institut für Troposphärenforschung (TROPOS) ist am Dienstag eine weltweit einzigartige Anlage in Betrieb genommen worden, mit der die Einflüsse von Turbulenzen auf Wolkenprozesse unter präzise einstellbaren Versuchsbedingungen untersucht werden können. Der neue Windkanal ist Teil des Leipziger Wolkenlabors, in dem seit 2006 verschiedenste Wolkenprozesse simuliert werden. Unter Laborbedingungen wurden z.B. das Entstehen und Gefrieren von Wolken nachgestellt. Wie stark Luftverwirbelungen diese Prozesse beeinflussen, konnte bisher noch nicht untersucht werden. Deshalb entstand in den letzten Jahren eine ergänzende Anlage für rund eine Million Euro.

Die von dieser Anlage zu erwarteten neuen Erkenntnisse sind wichtig für das Verständnis von Wetter und Klima, wie etwa die Bildung von Niederschlag und die...

Im Focus: Nanoskopie auf dem Chip: Mikroskopie in HD-Qualität

Neue Erfindung der Universitäten Bielefeld und Tromsø (Norwegen)

Physiker der Universität Bielefeld und der norwegischen Universität Tromsø haben einen Chip entwickelt, der super-auflösende Lichtmikroskopie, auch...

Im Focus: Löschbare Tinte für den 3-D-Druck

Im 3-D-Druckverfahren durch Direktes Laserschreiben können Mikrometer-große Strukturen mit genau definierten Eigenschaften geschrieben werden. Forscher des Karlsruher Institus für Technologie (KIT) haben ein Verfahren entwickelt, durch das sich die 3-D-Tinte für die Drucker wieder ‚wegwischen‘ lässt. Die bis zu hundert Nanometer kleinen Strukturen lassen sich dadurch wiederholt auflösen und neu schreiben - ein Nanometer entspricht einem millionstel Millimeter. Die Entwicklung eröffnet der 3-D-Fertigungstechnik vielfältige neue Anwendungen, zum Beispiel in der Biologie oder Materialentwicklung.

Beim Direkten Laserschreiben erzeugt ein computergesteuerter, fokussierter Laserstrahl in einem Fotolack wie ein Stift die Struktur. „Eine Tinte zu entwickeln,...

Im Focus: Leichtbau serientauglich machen

Immer mehr Autobauer setzen auf Karosserieteile aus kohlenstofffaserverstärktem Kunststoff (CFK). Dennoch müssen Fertigungs- und Reparaturkosten weiter gesenkt werden, um CFK kostengünstig nutzbar zu machen. Das Laser Zentrum Hannover e.V. (LZH) hat daher zusammen mit der Volkswagen AG und fünf weiteren Partnern im Projekt HolQueSt 3D Laserprozesse zum automatisierten Besäumen, Bohren und Reparieren von dreidimensionalen Bauteilen entwickelt.

Automatisiert ablaufende Bearbeitungsprozesse sind die Grundlage, um CFK-Bauteile endgültig in die Serienproduktion zu bringen. Ausgerichtet an einem...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

123. Internistenkongress: Traumata, Sprachbarrieren, Infektionen und Bürokratie – Herausforderungen

27.04.2017 | Veranstaltungen

Jenaer Akustik-Tag: Belastende Geräusche minimieren - für den Schutz des Gehörs

27.04.2017 | Veranstaltungen

Ballungsräume Europas

26.04.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

VLC 200 GT von EMAG: Neue passgenaue Dreh-Schleif-Lösung für die Bearbeitung von Pkw-Getrieberädern

27.04.2017 | Maschinenbau

Induktive Lötprozesse von eldec: Schneller, präziser und sparsamer verlöten

27.04.2017 | Maschinenbau

Smart Wireless Solutions: EU-Großprojekt „DEWI“ liefert Innovationen für eine drahtlose Zukunft

27.04.2017 | Informationstechnologie