Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Diamantwerkzeuge stellen feinste funktionale Oberflächenstrukturen her

08.10.2008
Diamantwerkzeuge ermöglichen, kleinste funktionelle Strukturen mechanisch in Bauteiloberflächen einzuarbeiten. Es werden entweder Muster mit einem Höhenprofil von wenigen Nanometern erzeugt oder Strukturen im Mikrometerbereich entlang der Funktionskanten geschnitten. Beide Prozesse erweitern das Spektrum der herstellbaren Mikrostrukturen erheblich.

Der Weg zu innovativen Produkten führt häufig über die Veränderung von Materialoberflächen: Selbstreinigende Fensterscheiben, Antifouling-Anstriche bei Schiffen oder auch elektronische Datenträger zählen zu den bekannten Beispielen. Manche Ideen lassen sich allerdings technisch noch nicht umsetzen oder erfordern einen Aufwand, der für die wirtschaftliche Nutzung zu teuer ist.

Mechanische Strukturierung als Basis für Wirtschaftlichkeit

Zwei neue Verfahren des IWT Stiftung Institut für Werkstofftechnik an der Universität Bremen versprechen in der Zukunft Abhilfe. Besonders feine Oberflächenstrukturen können dann zu neuen Produktentwicklungen in den verschiedensten Bereichen der Optik führen.

Eines der beiden Projekte wird bereits seit drei Jahren von der Volkswagen-Stiftung gefördert. Das Ziel des Projekts ist die Entwicklung eines Verfahrens zur effizienten Herstellung von „diffraktiven Optiken“.

Dies sind Optiken, die das Licht durch Beugung an Strukturen, die kleiner sind als die Lichtwellenlänge, verändern. Bei konventionellen Optiken werden Lichtstrahlen durch Brechung oder Reflexion an einer gekrümmten Oberfläche beeinflusst.

Diffraktive Optiken ermöglichen neue Funktionen

Diffraktive Optiken haben im Vergleich zu herkömmlichen Optiken große Vorteile: Sie sind kompakter und bieten eine höhere Funktionsvielfalt. Das industrielle Interesse an diffraktiven Optiken steigt daher ständig. Was bislang jedoch fehlt, ist ein kostengünstiges Verfahren zur Herstellung einzelner, maßgeschneiderter diffraktiver Optiken – wie sie etwa in der Sicherheitstechnik gebraucht werden.

Die Forscher des IWT sind gemeinsam mit Kollegen des Bremer Instituts für Angewandte Strahltechnik (BIAS) angetreten, das zu ändern. Sie entwickeln ein Verfahren, das auf der spanenden Bearbeitung mit Diamantwerkzeugen basiert. Das Besondere dabei: Zur Fertigung des Bauteils wird ein speziell dafür entwickelter „Nano Fast Tool Servo“ eingesetzt, der Muster mit einem Höhenprofil von wenigen Nanometern in die Oberfläche schreibt.

Diffraktive Optiken mit vorhandenen Werkzeugmaschinen herstellbar

Durch eine raffinierte Auswahl der Systemkomponenten ist der Gesamtaufbau nicht nur kostengünstig, sondern auch vergleichsweise einfach an vorhandene ultrapräzise Werkzeugmaschinen adaptierbar und so in eine industrielle Fertigung zu integrieren. Damit können Höhensprünge von maximal 500 nm bis auf ±10 nm genau erzeugt werden.

Für die Einzelfertigung ist dieses Verfahren ideal, denn es fasst die Fertigung der Optiken in einem Schritt zusammen. So dauert es nur wenige Minuten vom Entwurf einer diffraktiven Optik bis zur Fertigstellung – so die Planung.

Oberflächenstrukturierung zum Speichern von Daten

Anwendungsmöglichkeiten für diese Strukturierungstechnik ergeben sich in verschiedenen Bereichen: Die winzigen Höhenprofile ermöglichen es, Lichtwellen so umzulenken, dass Hologramme entstehen. Als Echtheitsmerkmal auf Produkten oder als optischer Zugangsschlüssel für Personen können diese fälschungssicheren Hologramme eines Tages zur einwandfreien Identifizierung dienen.

Zahlreiche weitere Anwendungen sind denkbar: So lassen sich mit dem vom IWT entwickelten Verfahren auch Daten auf Metallplatten schreiben. Wichtige Informationen können beispielsweise auf Nickeloberflächen mehrere tausend Jahren gespeichert werden und löschen sich nicht – wie bei einer CD oder DVD – spätestens nach einigen Jahrzehnten von selbst. Erste Hologramme wurden bereits gefertigt, wenngleich dieses Verfahren noch einige Jahre benötigen wird, um ein marktreifes Produkt zu werden.

Ein zweites Verfahren, dessen Entwicklung bereits seit 2004 von der Deutschen Forschungsgemeinschaft (DFG) gefördert wird, ermöglicht die spanende Fertigung mikrostrukturierter optischer Komponenten, die bisher nicht realisierbar waren.

Bei der Konstruktion moderner optischer Systeme übersteigen die Anforderungen des Optik-Designs häufig die Möglichkeiten der Fertigung: Um besondere Effekte oder einen hohen Wirkungsgrad zu erzielen, wird nach neuen Möglichkeiten gesucht, Licht von der Quelle – beispielsweise einer LED-Leuchte – auf eine Oberfläche zu lenken, auf der es vom Nutzer des Produkts wahrgenommen wird.

Fertigung von Reflektoren in Miniaturgröße

Thematisiert wird dies unter anderem in der Automobilindustrie, die neuartige Leuchten für Fahrzeuge auf den Markt bringen möchte. Ein weiteres Anwendungsfeld ist Sicherheitskleidung: Im Gegensatz zum „Katzenauge“ am Fahrrad, das 100% des Lichts zurückstrahlt, erreichen die feiner strukturierten Reflektoren auf Jacken und Hosen nur knapp 70%. Mit Hilfe des neuen Verfahrens können auch die komplexen Strukturen des Katzenauges in Miniaturgröße auf Oberflächen hergestellt werden.

Begünstigt wird davon aber auch die Entwicklung neuer Oberflächen für Verkehrsschilder. In den USA machen die Behörden bereits seit Jahren ambitionierte Vorgaben bezüglich der räumlichen Verteilung des reflektierten Lichtes.

Mikroschneiden als neues Bearbeitungsverfahren entwickelt

Um diese komplexen Strukturen mit einer Größe von 50 bis 500 µm zu fertigen, entwickelt das IWT ein neuartiges Verfahren zur Bearbeitung von Metalloberflächen, das Mikroschneiden genannt wird. Extrem scharfe, monokristalline Diamantwerkzeuge schneiden das Material nicht wie bei herkömmlichen Verfahren üblich mit einer kontinuierlichen Bewegung von Werkzeug- oder Werkstück, vielmehr fährt die Spitze des Werkzeugs einen unstetigen Werkzeugpfad entlang den Strukturkanten. Dadurch können pyramidale Mikrokavitäten und ähnliche Geometrien in optischer Qualität hergestellt werden.

Dieses weltweit einmalige Verfahren bietet sich immer dann an, wenn sowohl die Struktur selbst als auch ihr Negativ gleichermaßen prismatische Mikrokavitäten enthalten, wie dies bei den genannten Katzenaugen der Fall ist. Das Verfahren hat sich bereits im Labor bewährt und wird jetzt in einen industrietauglichen Fertigungsprozess überführt.

Dr.-Ing. Ralf Gläbe ist Mitglied der Geschäftsführung des SFB/TR4 im Labor für Mikrozerspanung an der Universität Bremen sowie Wissenschaftler am IWT Stiftung Institut für Werkstofftechnik, Bremen.

Ralf Gläbe | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/index.cfm?pid=1498&pk=148246

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Satellitengestützte Lasermesstechnik gegen den Klimawandel
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

nachricht eldec-Technologie im Maschinenbau: Standardisierte Hochleistungsgeneratoren für exzellente Maschinenbaulösungen
15.12.2016 | EMAG eldec Induction GmbH

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erforschung von Elementarteilchen in Materialien

Laseranregung von Semimetallen ermöglicht die Erzeugung neuartiger Quasiteilchen in Festkörpersystemen sowie ultraschnelle Schaltung zwischen verschiedenen Zuständen.

Die Untersuchung der Eigenschaften fundamentaler Teilchen in Festkörpersystemen ist ein vielversprechender Ansatz für die Quantenfeldtheorie. Quasiteilchen...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Mit solaren Gebäudehüllen Architektur gestalten

Solarthermie ist in der breiten Öffentlichkeit derzeit durch dunkelblaue, rechteckige Kollektoren auf Hausdächern besetzt. Für ästhetisch hochwertige Architektur werden Technologien benötigt, die dem Architekten mehr Gestaltungsspielraum für Niedrigst- und Plusenergiegebäude geben. Im Projekt »ArKol« entwickeln Forscher des Fraunhofer ISE gemeinsam mit Partnern aktuell zwei Fassadenkollektoren für solare Wärmeerzeugung, die ein hohes Maß an Designflexibilität erlauben: einen Streifenkollektor für opake sowie eine solarthermische Jalousie für transparente Fassadenanteile. Der aktuelle Stand der beiden Entwicklungen wird auf der BAU 2017 vorgestellt.

Im Projekt »ArKol – Entwicklung von architektonisch hoch integrierten Fassadekollektoren mit Heat Pipes« entwickelt das Fraunhofer ISE gemeinsam mit Partnern...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: Mit Bindfaden und Schere - die Chromosomenverteilung in der Meiose

Was einmal fest verbunden war sollte nicht getrennt werden? Nicht so in der Meiose, der Zellteilung in der Gameten, Spermien und Eizellen entstehen. Am Anfang der Meiose hält der ringförmige Proteinkomplex Kohäsin die Chromosomenstränge, auf denen die Bauanleitung des Körpers gespeichert ist, zusammen wie ein Bindfaden. Damit am Ende jede Eizelle und jedes Spermium nur einen Chromosomensatz erhält, müssen die Bindfäden aufgeschnitten werden. Forscher vom Max-Planck-Institut für Biochemie zeigen in der Bäckerhefe wie ein auch im Menschen vorkommendes Kinase-Enzym das Aufschneiden der Kohäsinringe kontrolliert und mit dem Austritt aus der Meiose und der Gametenbildung koordiniert.

Warum sehen Kinder eigentlich ihren Eltern ähnlich? Die meisten Zellen unseres Körpers sind diploid, d.h. sie besitzen zwei Kopien von jedem Chromosom – eine...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Über intelligente IT-Systeme und große Datenberge

17.01.2017 | Veranstaltungen

Aquakulturen und Fangquoten – was hilft gegen Überfischung?

16.01.2017 | Veranstaltungen

14. BF21-Jahrestagung „Mobilität & Kfz-Versicherung im Fokus“

12.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Erforschung von Elementarteilchen in Materialien

17.01.2017 | Physik Astronomie

Wasser - der heimliche Treiber des Kohlenstoffkreislaufs?

17.01.2017 | Geowissenschaften

Kieselalge in der Antarktis liest je nach Umweltbedingungen verschiedene Varianten seiner Gene ab

17.01.2017 | Biowissenschaften Chemie