Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bremer Experiment für die ISS: Wie verhält sich Flüssigkeit im Weltall?

08.04.2010
Experimentmodul des Zentrums für angewandte Raumfahrttechnologie und Mikrogravitation der Universität Bremen fliegt im Space Shuttle Discovery mit zur Internationalen Raumstation.

Am 5. April 2010 startete um 12:21 Uhr Mitteleuropäischer Sommerzeit das Space Shuttle Discovery vom Kennedy Space Center in Cape Canaveral (Florida) zur Internationalen Raumstation ISS: Mit an Bord ist eine Forschungsapparatur für ein Experiment, das von Wissenschaftlern der Universität Bremen und der Portland State University (USA) im Rahmen des bilateralen Kooperationsprojekts "Capillary Channel Flows" (CCF) entwickelt worden ist.

Bei dem Experiment, das im Laufe des Jahres in der ISS durchgeführt wird, soll untersucht werden, wie sich Flüssigkeiten in einer spezifischen geometrischen Anordnung - in kapillaren Kanälen - unter Schwerelosigkeitsbedingungen verhalten. Die Klärung dieser Frage ist für die technische Auslegung von künftigen Treibstofftanks für Raketenoberstufen und Satelliten von besonderem Interesse.

Wie kam die Zusammenarbeit zwischen NASA und ZARM zustande?

Die NASA hatte weltweit Experimentiermöglichkeiten für die Raumsstation ISS ausgeschrieben. Die Wissenschaftler Dr. Michael Dreyer (Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation ZARM, Universität Bremen) und Professor Mark Weislogel (Portland State University, USA) erhielten für ihr Projekt zum Thema "Strömungen in Kapillarkanälen" den Zuschlag - Beleg für die international anerkannte Forschung des ZARM über das Verhalten von Flüssigkeiten unter Schwerelosigkeit. Die Arbeiten werden seit Jahren mit Bundesmitteln durch das Deutsche Zentrum für Luft- und Raumfahrt (DLR / Förderkennzeichen 50 WM 0845) unterstützt. Das DLR-Raumfahrtmanagement förderte neben den Bremer Forschungsaktivitäten zugleich - mit Mitteln des Bundesministeriums für Wirtschaft und Technologie - die Entwicklung und den Bau der Forschungsapparatur CCF durch die deutsche und europäische Raumfahrtindustrie (Astrium). In einer multilateralen Zusammenarbeit kam das konkrete Projekt "Capillary Channel Flows" heraus. Konkret vereinbart ist: Die NASA ist im Wesentlichen für den Transport der Apparatur zur ISS, deren dortigen Betrieb und das Astronautentraining verantwortlich. Die deutsche Seite stellt die Apparatur für den Bordeinsatz sowie ein Ingenieur- und ein Trainingsmodell zur Verfügung. Das Flugmodell wird in der "Microgravity Science Glovebox" (MSG) der NASA im Columbus-Modul der ISS installiert.

Hintergrund zur Flüssigkeitshandhabung unter Schwerelosigkeit

Ob Raumsonde, Fernsehsatellit oder auch ein zukünftiger bemannter Mond- oder Mars-Flug: An Bord von Weltraumfahrzeugen ist es von entscheidender Bedeutung, Flüssigkeiten unter den schwierigen Bedingungen der Schwerelosigkeit sicher und effektiv zu handhaben. Das gilt sowohl für Treibstoffe als auch für Wasser und flüssige Gase. Auf der Erde ist dies kein Problem. Benzin in einem Autotank beispielsweise schwappt dank der Erdanziehung immer am Boden. Unter Schwerelosigkeit hingegen verteilt sich der Treibstoff überall im Tank. Eine große Herausforderung für Raumfahrttechniker ist es nun, den Raketentreibstoff im Tank zur Auslassöffnung zu fördern und den Raketentriebwerken blasenfrei zur Verfügung zu stellen. Eine besonders viel versprechende und elegante technische Lösung ist der Einsatz von seitlich offenen Leitungen, so genannten Kapillarkanälen.

Dabei strömt eine Flüssigkeit zwischen zwei parallel zueinander angeordneten, schmalen Platten. Dieser Kapillarkanal ist also oben und unten begrenzt, links und rechts dagegen offen. Die strömende Flüssigkeit wird durch ihre Oberflächenspannung und die gute Benetzung zum Wandmaterial zwischen den beiden Platten gehalten. Welche Kräfte dabei wirksam sind und wie sie interagieren, wird aktuell mit den Gleichungen der Strömungsmechanik mathematisch modelliert. Eine Verifizierung (oder Validierung) der theoretischen Berechnungen kann jedoch nur an Experimenten durchgeführt werden.

Diesem Ziel dient ein Raumstationsexperiment, das mit einem Kapillarkanal aus zwei parallelen Glasplatten durchgeführt wird. Die Breite der Platten beträgt 25 Millimeter, ihr Abstand 5 Millimeter, und die Länge des Kanals sowie der Volumenstrom können während der Mission variiert werden. Als Flüssigkeit wird ein sehr dünnflüssiges Fluid verwendet, dessen Stoffeigenschaften wie Zähigkeit, Dichte und Oberflächenspannung in Kombination mit der Geometrie des Testkanals realen Treibstoffen sehr ähnlich sind. Die Ergebnisse können somit vom Modell auf ein Raumfahrzeug übertragen werden. Eine hochauflösende Kamera filmt das Experiment und sendet ihre Daten direkt zur Bodenstation, von wo aus die Versuchsleiter sofort in den Ablauf eingreifen können.

Universität Bremen
Zentrum für angewandte Raumfahrttechnologie und Mikrogravitation (ZARM)
Privatdozent Dr.-Ing. Michael Dreyer
Tel. 0 421 2184038
E-Mail: michael.dreyer@zarm.uni-bremen.de

Eberhard Scholz | idw
Weitere Informationen:
http://www.uni-bremen.de
http://www.zarm.uni-bremen.de/2forschung/grenzph/isoterm/crit_velo/crit_velo.htm

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Flexible Fertigung von Elektromotoren für Fahrzeuge
06.09.2017 | Karlsruher Institut für Technologie

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wundermaterial Graphen: Gewölbt wie das Polster eines Chesterfield-Sofas

Graphen besitzt extreme Eigenschaften und ist vielseitig verwendbar. Mit einem Trick lassen sich sogar die Spins im Graphen kontrollieren. Dies gelang einem HZB-Team schon vor einiger Zeit: Die Physiker haben dafür eine Lage Graphen auf einem Nickelsubstrat aufgebracht und Goldatome dazwischen eingeschleust. Im Fachblatt 2D Materials zeigen sie nun, warum dies sich derartig stark auf die Spins auswirkt. Graphen kommt so auch als Material für künftige Informationstechnologien infrage, die auf der Verarbeitung von Spins als Informationseinheiten basieren.

Graphen ist wohl die exotischste Form von Kohlenstoff: Alle Atome sind untereinander nur in der Ebene verbunden und bilden ein Netz mit sechseckigen Maschen,...

Im Focus: Hochautomatisiertes Fahren bei Schnee und Regen: Robuste Warnehmung dank intelligentem Sensormix

Schlechte Sichtverhältnisse bei Regen oder Schnellfall sind für Menschen und hochautomatisierte Fahrzeuge eine große Herausforderung. Im europäischen Projekt RobustSENSE haben die Forscher von Fraunhofer FOKUS mit 14 Partnern, darunter die Daimler AG und die Robert Bosch GmbH, in den vergangenen zwei Jahren eine Softwareplattform entwickelt, auf der verschiedene Sensordaten von Kamera, Laser, Radar und weitere Informationen wie Wetterdaten kombiniert werden. Ziel ist, eine robuste und zuverlässige Wahrnehmung der Straßensituation unabhängig von der Komplexität und der Sichtverhältnisse zu gewährleisten. Nach der virtuellen Erprobung des Systems erfolgt nun der Praxistest, unter anderem auf dem Berliner Testfeld für hochautomatisiertes Fahren.

Starker Schneefall, ein Ball rollt auf die Fahrbahn: Selbst ein Mensch kann mitunter nicht schnell genug erkennen, ob dies ein gefährlicher Gegenstand oder...

Im Focus: Ultrakurze Momentaufnahmen der Dynamik von Elektronen in Festkörpern

Mit Hilfe ultrakurzer Laser- und Röntgenblitze haben Wissenschaftler am Max-Planck-Institut für Quantenoptik (Garching bei München) Schnappschüsse der bislang kürzesten Bewegung von Elektronen in Festkörpern gemacht. Die Bewegung hielt 750 Attosekunden lang an, bevor sie abklang. Damit stellten die Wissenschaftler einen neuen Rekord auf, ultrakurze Prozesse innerhalb von Festkörpern aufzuzeichnen.

Wenn Röntgenstrahlen auf Festkörpermaterialien oder große Moleküle treffen, wird ein Elektron von seinem angestammten Platz in der Nähe des Atomkerns...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantensensoren entschlüsseln magnetische Ordnung in neuartigem Halbleitermaterial

Physiker konnte erstmals eine spiralförmige magnetische Ordnung in einem multiferroischen Material abbilden. Diese gelten als vielversprechende Kandidaten für zukünftige Datenspeicher. Der Nachweis gelang den Forschern mit selbst entwickelten Quantensensoren, die elektromagnetische Felder im Nanometerbereich analysieren können und an der Universität Basel entwickelt wurden. Die Ergebnisse von Wissenschaftlern des Departements Physik und des Swiss Nanoscience Institute der Universität Basel sowie der Universität Montpellier und Forschern der Universität Paris-Saclay wurden in der Zeitschrift «Nature» veröffentlicht.

Multiferroika sind Materialien, die gleichzeitig auf elektrische wie auch auf magnetische Felder reagieren. Die beiden Eigenschaften kommen für gewöhnlich...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungen

Zwei Grad wärmer – und dann?

19.09.2017 | Veranstaltungen

10. Cottbuser Medienrechtstage zu »Fake News, Hate Speech und Whistleblowing«

18.09.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Parasitenflirt: Molekulare Kamera zeigt Paarungszustand von Bilharziose-Erregern in 3D

19.09.2017 | Biowissenschaften Chemie

Biowissenschaftler tauschen neue Erkenntnisse über molekulare Gen-Schalter aus

19.09.2017 | Veranstaltungsnachrichten

Ausschreibung des Paul-Martini-Preises 2018 für klinische Pharmakologie

19.09.2017 | Förderungen Preise