Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Bodenschätze in der Tiefsee lokalisieren – einfach und umweltschonend

22.04.2016

Bislang ist es mit sehr hohen Kosten verbunden, Bodenschätze am Meeresboden zu lokalisieren. Um diese zu reduzieren, arbeitet das Laser Zentrum Hannover e.V. (LZH) gemeinsam mit acht weiteren europäischen Partnern daran, bis 2020 ein laserbasiertes, autonomes System zu entwickeln. Dieses soll Proben, wie beispielsweise Manganknollen, detektieren und direkt auf dem Tiefseegrund hinsichtlich ihrer Materialzusammensetzung analysieren.

Mit dem zuverlässigen und kostengünstigen System sollen zukünftig Mineral- und Rohstoffvorkommen großer Gebiete abgebildet werden. Neben den reduzierten Kosten wird mit dieser Technik auch der Eingriff in die Natur deutlich verringert.


Massive Sulfide

Foto: GEOMAR


Passiv Q-geschalteter Prototyp eines Laserkopfs entwickelt von LZH im Rahmen des Technologie-Vorbereitungsprogramms für das LIBS der ESA ExoMARS Mission

Foto: LZH

Kombination von AUV und LIBS

Um dieses Ziel zu erreichen, werden zwei Technologien kombiniert: Ein autonomes Unterwasserfahrzeug (AUV) für das 3D-Kartografieren des Meeresbodens wird mit einer laserbasierten Element-Analyse-Einheit ausgestattet. Diese Einheit ermöglicht es, basierend auf der laserinduzierten Plasmaspektroskopie (LIBS) Bodenproben zu untersuchen. Dafür wird ein kompaktes, autonomes System benötigt, das außerdem robust genug ist, dem in der Tiefsee herrschenden Druck standzuhalten.

Wissen aus der Raumfahrt für die Tiefsee

Die Abteilungen Laserentwicklung sowie Werkstoff- und Prozesstechnik des LZH nutzen für die Entwicklung des Systems das Wissen aus dem ExoMARS-Projekt des LZH. Dafür wurde ein kleines, ultraleichtes Lasersystem entwickelt, das LIBS-basierte Analysen auf dem Mars ermöglichen soll. Für den Einsatz in der Tiefsee ist das Gewicht des Lasersystems nebensächlich. Die Anforderung, ein sehr kompaktes System mit gleichzeitig hoher Pulsenergie einzusetzen, besteht aber auch hier.

Bei der Entwicklung arbeiten die Wissenschaftlerinnen und Wissenschaftler des LZH mit der neoLASE GmbH zusammen, einer Ausgründung des LZH. Die Mitarbeiter der Firma bringen ihre Expertise zur Elektronik und Steuerung des Lasersystems in das Projekt ein. Die weiteren Partner ergänzen notwendige Kompetenzen in den Bereichen Meeresforschung, 3D-Kartografie und Biogeochemie.

Das Projekt „ROBotic sUbSea exploration Technologies - RO-BUST“ wird vom The Welding Institute (TWI Ltd.) in Großbritannien koordiniert. Neben dem LZH und der neoLASE GmbH sind an dem Projekt weiterhin beteiligt: CGG Veritas Consultants Ltd. (Frankreich), ALS Marine Consultants Ltd. (Zypern), GEOMAR Helmholtz Zentrum für Ozeanforschung (Deutschland), Graal Tech S.r.l. (Italien), Università Degli Studi Di Genova (Italien), Coronis Computing S.L. (Spanien).

Auf der Hannover Messe zeigt das LZH neueste Forschungsergebnisse zum Laserstrahlschneiden unter Wasser. Dieser Prozess wird ebenfalls von den Wissenschaftlern der Gruppe Maschinen und Steuerungen aus der Abteilung Werkstoff- und Prozesstechnik des LZH entwickelt. Besuchen Sie uns auf dem Gemeinschaftsstand des Landes Niedersachsen Halle 2, Stand A08!

Dr. Nadine Tinne | Laser Zentrum Hannover e.V.
Weitere Informationen:
http://www.lzh.de/

Weitere Berichte zu: AUV LZH Laser Zentrum Hannover Ozeanforschung Prozesstechnik Pulsenergie Tiefsee neoLASE

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Aufwind für die Luftfahrt: University of Twente entwickelt leistungsstarke Verbindungsmethode
23.01.2017 | University of Twente

nachricht Satellitengestützte Lasermesstechnik gegen den Klimawandel
17.01.2017 | Fraunhofer-Institut für Lasertechnik ILT

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

An Bord einer Höhenforschungsrakete wurde erstmals im Weltraum eine Wolke ultrakalter Atome erzeugt. Damit gelang der MAIUS-Mission der Nachweis, dass quantenoptische Sensoren auch in rauen Umgebungen wie dem Weltraum eingesetzt werden können – eine Voraussetzung, um fundamentale Fragen der Wissenschaft beantworten zu können und ein Innovationstreiber für alltägliche Anwendungen.

Gemäß dem Einstein’schen Äquivalenzprinzip werden alle Körper, unabhängig von ihren sonstigen Eigenschaften, gleich stark durch die Gravitationskraft...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Mikrobe des Jahres 2017: Halobacterium salinarum - einzellige Urform des Sehens

Am 24. Januar 1917 stach Heinrich Klebahn mit einer Nadel in den verfärbten Belag eines gesalzenen Seefischs, übertrug ihn auf festen Nährboden – und entdeckte einige Wochen später rote Kolonien eines "Salzbakteriums". Heute heißt es Halobacterium salinarum und ist genau 100 Jahre später Mikrobe des Jahres 2017, gekürt von der Vereinigung für Allgemeine und Angewandte Mikrobiologie (VAAM). Halobacterium salinarum zählt zu den Archaeen, dem Reich von Mikroben, die zwar Bakterien ähneln, aber tatsächlich enger verwandt mit Pflanzen und Tieren sind.

Rot und salzig
Archaeen sind häufig an außergewöhnliche Lebensräume angepasst, beispielsweise heiße Quellen, extrem saure Gewässer oder – wie H. salinarum – an...

Im Focus: Innovatives Hochleistungsmaterial: Biofasern aus Florfliegenseide

Neuartige Biofasern aus einem Seidenprotein der Florfliege werden am Fraunhofer-Institut für Angewandte Polymerforschung IAP gemeinsam mit der Firma AMSilk GmbH entwickelt. Die Forscher arbeiten daran, das Protein in großen Mengen biotechnologisch herzustellen. Als hochgradig biegesteife Faser soll das Material künftig zum Beispiel in Leichtbaukunststoffen für die Verkehrstechnik eingesetzt werden. Im Bereich Medizintechnik sind beispielsweise biokompatible Seidenbeschichtungen von Implantaten denkbar. Ein erstes Materialmuster präsentiert das Fraunhofer IAP auf der Internationalen Grünen Woche in Berlin vom 20.1. bis 29.1.2017 in Halle 4.2 am Stand 212.

Zum Schutz des Nachwuchses vor bodennahen Fressfeinden lagern Florfliegen ihre Eier auf der Unterseite von Blättern ab – auf der Spitze von stabilen seidenen...

Im Focus: Verkehrsstau im Nichts

Konstanzer Physiker verbuchen neue Erfolge bei der Vermessung des Quanten-Vakuums

An der Universität Konstanz ist ein weiterer bedeutender Schritt hin zu einem völlig neuen experimentellen Zugang zur Quantenphysik gelungen. Das Team um Prof....

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

Hybride Eisschutzsysteme – Lösungen für eine sichere und nachhaltige Luftfahrt

23.01.2017 | Veranstaltungen

Mittelstand 4.0 – Mehrwerte durch Digitalisierung: Hintergründe, Beispiele, Lösungen

20.01.2017 | Veranstaltungen

Nachhaltige Wassernutzung in der Landwirtschaft Osteuropas und Zentralasiens

19.01.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Wie der Nordatlantik zum Wärmepirat wurde

23.01.2017 | Geowissenschaften

Immunabwehr ohne Kollateralschaden

23.01.2017 | Biowissenschaften Chemie

Erstmalig quantenoptischer Sensor im Weltraum getestet – mit einem Lasersystem aus Berlin

23.01.2017 | Physik Astronomie