Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrochemisches Abtragverfahren PEM hat das Potenzial für die Serienfertigung

18.06.2008
Das Precise Electrochemical Machining oder PEM (auf Deutsch: präzise elektrochemische Metallbearbeitung) ist ein Verfahren, mit dem hochgenaue Bauteile hergestellt werden können. Nachteile der konventionellen Metallbearbeitung, wie Werkzeugverschleiß, mechanische Belastung, Mikrorisse, Materialbeeinflussung durch Hitze, weiße Schichten oder Entgratungsaufwand, gibt es bei dem derzeit noch recht unbekannten Verfahren nicht.

Die Entwicklungen neuerer und besserer Metallbearbeitungsverfahren sind getrieben von den stetig steigenden Forderungen nach mehr Präzision, mehr Effizienz (höheren Standzeiten, reduzierter Nacharbeit) und einer besseren Bearbeitbarkeit neuer, hochfester Superlegierungen in der Luft- und Raumfahrttechnik, im Automotive-Bereich, in der Energie-, Mikrosystem- und Medizintechnik. Auch die Entwicklung der PEM-Technologie entsprang dem Wunsch nach höherer Präzision und höherer Effizienz. Erst die elektrochemische Metallbearbeitung ermöglicht das Bearbeiten nahezu aller Metalle, auch von Refraktärmetallen, und Superlegierungen.

Die unerwünschten Nebeneffekte der konventionellen und etablierten Metallbearbeitungsverfahren Funkenerosion, Fräsen und Lasern – wie Mikrorissbildung durch Hitzeintrag, weiße Schichten, mechanischer Stress, Gratbildung, negative Beeinflussung der Materialeigenschaften (Korrosionsbeständigkeit, Härte, Zähigkeit, Magnetismus, Biokompatibilität) entfallen bei der präzisen elektrochemische Metallbearbeitung komplett, weil es sich um ein kontaktfreies und kaltes Abtragverfahren handelt.

Bereits seit den 70er-Jahren finden elektrochemische Verfahren in der Herstellung von Turbinenrädern und Turbinenschaufeln Anwendung. Hier legt man vor allem Wert auf die Materialintegrität auch nach dem Bearbeiten. Das heißt: auf das Fehlen von Mikrorissen und anderen unerwünschten Nebeneffekten. Auch die Bearbeitungsgeschwindigkeiten mittels PEM sind wesentlich höher als bei den konventionellen Technologien.

... mehr zu:
»ECM »Electrochemical »PEM »Werkstück

Als bekannteste Applikation für die präzise elektrochemische Metallbearbeitung sei die Herstellung der Philishave Rasierkappen durch Philips genannt. Erst die PEM-Technik ermöglichte es, dieses hochpräzise Produkt effizient und qualitativ hochwertig herzustellen. Philips begann 1999 mit der Umstellung der gesamten Rasierkappenproduktion.

Prozessumstellung auf präzise elektrochemische Metallbearbeitung verspricht Rationalisierungseffekte

So konnte aus einem aufwändigen, 21 Arbeitsschritte umfassenden Produktionsprozess ein automatischer Vier-Schritte-Prozess werden. Heute werden mittels PEM jährlich etwa 80 Mio. Rasierkappen mit einer Präzision im µm-Bereich hergestellt.

Die präzise elektrochemische Metallbearbeitung, PEM, basiert auf dem elektrochemischen Grundprinzip der anodischen Auflösung, 1832 entdeckt und beschrieben von Michael Faraday: Werden zwei Metallstäbe in eine leitende Flüssigkeit (Elektrolyt) getaucht und eine Gleichspannung zwischen ihnen angelegt, fließt ein Gleichstrom zwischen beiden Stäben.

Der am Pluspol (Anode) angeklemmte Metallstab löst sich langsam auf, während der am Minuspol (Kathode) befestigte Stab sich nicht auflöst. Dieses Prinzip wird auch beim Elektropolieren angewendet.

Der russische Forscher W. Gussev entwickelte basierend auf den Erkenntnissen Faradays 1929 in seinem Labor den ersten elektrochemischen Prozess. In der Zeit zwischen den 30er- und 60er-Jahren wurde in den USA und in Russland weiter an den elektrochemischen Prozessen und deren industrieller Nutzung geforscht.

Anfang 1960 wurden in der UdSSR und in den USA die ersten elektrochemischen Prozesse (ECM = Electrochemical Machining) in der Luft- und Raumfahrtindustrie eingeführt. In den Siebzigern wurde auch in Europa das Electrochemical Machining auf Nischenmärkten (Luftfahrt und Energietechnik) übernommen.

Basis der Entwicklung war die Pulsed-ECM-Technik

Das klassische Electrochemcial Machining, kurz ECM, benutzt eine Formelektrode als Kathode (Minuspol) und das zu bearbeitende Werkstück als Anode (Pluspol). Wie in der Senkerosion wird die Formelektrode in der Z-Achse verfahren. Zwischen Formelektrode und Werkstück fließt ein Elektrolyt, der den Strom überträgt. Das Werkstück löst sich anodisch auf und passt sich der Form der Elektrode an. Die herausgelösten Metallbestandteile werden vom fließenden Elektrolyt weggespült.

Trotz vieler technologischer Vorteile konnte sich die ECM-Technologie in den 70er- und 80er-Jahren nicht gegen die damals präzisere Funkenerosion durchsetzen. Die eher geringe Präzision beschränkte ihren Einsatz auf Nischenanwendungen.

Die Entwicklung ging wegen der klaren technologischen Vorteile aber weiter. So entstand aus dem ECM das PECM. Das Pulsed ECM ermöglichte mit gepulstem Strom eine höhere Präzision des ECM-Verfahrens.

Das deutsch-niederländische Forschungsprojekt Spectrum, an dem die Heinrich-Heine-Universität Düsseldorf, die Freie Universität Brüssel, die Großkonzerne Philips und Bosch sowie das Consulting-Unternehmen Elsyca beteiligt waren, entwickelte das PECM-Verfahren weiter zum heutigen Precise Electrochemical Machining. Das kurz als PEM bezeichnete Verfahren zeichnet sich nach Überwindung der Entwicklungsschwierigkeiten als ein hochpräzises und wirtschaftliches elektrochemisches Metallbearbeitungsverfahren aus.

Schwingende Elektrode sorgt für hohe Präzision

Beim PEM-Verfahren wird, wie beim klassischen elektrochemischen Senken, das zu bearbeitende Werkstück anodisch (Pluspol) und die Formelektrode kathodisch (Minuspol) geschaltet. Ein Elektrolyt fließt zwischen Formelektrode und Werkstück, um den gepulsten Gleichstrom zwischen beiden Polen zu übertragen und die herausgelösten Metallbestandteile abzutransportieren.

Beim PEM schwingt jedoch die Formelektrode mit einer Frequenz von 10 bis 60 Hz in Z-Richtung. Dabei vergrößert und verkleinert sich der so genannte Reaktionsspalt periodisch.

Der Strom wird erst gepulst, wenn die Elektrode sehr nahe dem Werkstück ist. Danach öffnet sich der Reaktionsspalt und der verbrauchte Elektrolyt kann abtransportiert werden. So ist es möglich, hoch genaue Abbildungen und Abformungen in Serie zu erzeugen. Seit 2003 sind ausgereifte PEM-Maschinen auf dem freien Markt erhältlich, ein Beispiel dafür liefert der deutsch-französische Hersteller Pemtec.


Gute Zukunftsaussichten für die präzise elektrochemische Metallbearbeitung
Zusammenfassend lässt sich sagen: PEM ist ein elektrochemischer, kalter Senkerosionsprozess mit einer in Z-Richtung, vibrierenden Elektrode (Kathode). Ein gesteuerter gepulster Gleichstrom wird zwischen der Elektrode und dem zu bearbeitenden metallischen Werkstück angelegt und über ein Elektrolyt (NaNO3) übertragen. Hierbei löst sich das anodisch geschaltete Werkstück chemisch auf und passt sich der Form der nachgeführten Elektrode an. Das funktioniert ähnlich der Funkenerosionstechnik, speziell der Senkerosion.

Die klaren Vorteile des PEM-Verfahrens werden dazu führen, die Technik in großem Stil in der Serienbearbeitung von Metallteilen in verschiedenen innovationsfreundlichen Branchen und besonders in der Bearbeitung von hochfesten Legierungen und Umformwerkzeugen einzusetzen.

Die dazu noch notwendige Weiterentwicklung der PEM-Werkzeugmaschinen, vor allem hinsichtlich einer Implementierung von X-, Y- und C-Achsen, wird durch die zunehmenden Forderungen der Industrie innerhalb der nächsten drei bis fünf Jahre realisiert werden müssen.

Markus Gäckle ist Geschäftsführer der Primetec GmbH & Co. KG in 75242 Neuhausen.

Markus Gäckle | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/124644/

Weitere Berichte zu: ECM Electrochemical PEM Werkstück

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Untersuchung klimatischer Einflüsse in der Klimazelle - Werkzeugmaschinen im Check-Up
01.02.2018 | Fraunhofer-Institut für Werkzeugmaschinen und Umformtechnik

nachricht 3D-Druck von Metallen: Neue Legierung ermöglicht Druck von sicheren Stahl-Produkten
23.01.2018 | Universität Kassel

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Die Brücke, die sich dehnen kann

Brücken verformen sich, daher baut man normalerweise Dehnfugen ein. An der TU Wien wurde eine Technik entwickelt, die ohne Fugen auskommt und dadurch viel Geld und Aufwand spart.

Wer im Auto mit flottem Tempo über eine Brücke fährt, spürt es sofort: Meist rumpelt man am Anfang und am Ende der Brücke über eine Dehnfuge, die dort...

Im Focus: Eine Frage der Dynamik

Die meisten Ionenkanäle lassen nur eine ganz bestimmte Sorte von Ionen passieren, zum Beispiel Natrium- oder Kaliumionen. Daneben gibt es jedoch eine Reihe von Kanälen, die für beide Ionensorten durchlässig sind. Wie den Eiweißmolekülen das gelingt, hat jetzt ein Team um die Wissenschaftlerin Han Sun (FMP) und die Arbeitsgruppe von Adam Lange (FMP) herausgefunden. Solche nicht-selektiven Kanäle besäßen anders als die selektiven eine dynamische Struktur ihres Selektivitätsfilters, berichten die FMP-Forscher im Fachblatt Nature Communications. Dieser Filter könne zwei unterschiedliche Formen ausbilden, die jeweils nur eine der beiden Ionensorten passieren lassen.

Ionenkanäle sind für den Organismus von herausragender Bedeutung. Wenn zum Beispiel Sinnesreize wahrgenommen, ans Gehirn weitergeleitet und dort verarbeitet...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Erste integrierte Schaltkreise (IC) aus Plastik

Erstmals ist es einem Forscherteam am Max-Planck-Institut (MPI) für Polymerforschung in Mainz gelungen, einen integrierten Schaltkreis (IC) aus einer monomolekularen Schicht eines Halbleiterpolymers herzustellen. Dies erfolgte in einem sogenannten Bottom-Up-Ansatz durch einen selbstanordnenden Aufbau.

In diesem selbstanordnenden Aufbauprozess ordnen sich die Halbleiterpolymere als geordnete monomolekulare Schicht in einem Transistor an. Transistoren sind...

Im Focus: Quantenbits per Licht übertragen

Physiker aus Princeton, Konstanz und Maryland koppeln Quantenbits und Licht

Der Quantencomputer rückt näher: Neue Forschungsergebnisse zeigen das Potenzial von Licht als Medium, um Informationen zwischen sogenannten Quantenbits...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

VideoLinks
Industrie & Wirtschaft
Veranstaltungen

Digitalisierung auf dem Prüfstand: Hochkarätige Konferenz zu Empowerment in der agilen Arbeitswelt

20.02.2018 | Veranstaltungen

Aachener Optiktage: Expertenwissen in zwei Konferenzen für die Glas- und Kunststoffoptikfertigung

19.02.2018 | Veranstaltungen

Konferenz "Die Mobilität von morgen gestalten"

19.02.2018 | Veranstaltungen

VideoLinks
Wissenschaft & Forschung
Weitere VideoLinks im Überblick >>>
 
Aktuelle Beiträge

Highlight der Halbleiter-Forschung

20.02.2018 | Physik Astronomie

Wie verbessert man die Nahtqualität lasergeschweißter Textilien?

20.02.2018 | Materialwissenschaften

Der Bluthochdruckschalter in der Nebenniere

20.02.2018 | Biowissenschaften Chemie

Weitere B2B-VideoLinks
IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics