Forum für Wissenschaft, Industrie und Wirtschaft

Hauptsponsoren:     3M 
Datenbankrecherche:

 

Elektrochemisches Abtragverfahren PEM hat das Potenzial für die Serienfertigung

18.06.2008
Das Precise Electrochemical Machining oder PEM (auf Deutsch: präzise elektrochemische Metallbearbeitung) ist ein Verfahren, mit dem hochgenaue Bauteile hergestellt werden können. Nachteile der konventionellen Metallbearbeitung, wie Werkzeugverschleiß, mechanische Belastung, Mikrorisse, Materialbeeinflussung durch Hitze, weiße Schichten oder Entgratungsaufwand, gibt es bei dem derzeit noch recht unbekannten Verfahren nicht.

Die Entwicklungen neuerer und besserer Metallbearbeitungsverfahren sind getrieben von den stetig steigenden Forderungen nach mehr Präzision, mehr Effizienz (höheren Standzeiten, reduzierter Nacharbeit) und einer besseren Bearbeitbarkeit neuer, hochfester Superlegierungen in der Luft- und Raumfahrttechnik, im Automotive-Bereich, in der Energie-, Mikrosystem- und Medizintechnik. Auch die Entwicklung der PEM-Technologie entsprang dem Wunsch nach höherer Präzision und höherer Effizienz. Erst die elektrochemische Metallbearbeitung ermöglicht das Bearbeiten nahezu aller Metalle, auch von Refraktärmetallen, und Superlegierungen.

Die unerwünschten Nebeneffekte der konventionellen und etablierten Metallbearbeitungsverfahren Funkenerosion, Fräsen und Lasern – wie Mikrorissbildung durch Hitzeintrag, weiße Schichten, mechanischer Stress, Gratbildung, negative Beeinflussung der Materialeigenschaften (Korrosionsbeständigkeit, Härte, Zähigkeit, Magnetismus, Biokompatibilität) entfallen bei der präzisen elektrochemische Metallbearbeitung komplett, weil es sich um ein kontaktfreies und kaltes Abtragverfahren handelt.

Bereits seit den 70er-Jahren finden elektrochemische Verfahren in der Herstellung von Turbinenrädern und Turbinenschaufeln Anwendung. Hier legt man vor allem Wert auf die Materialintegrität auch nach dem Bearbeiten. Das heißt: auf das Fehlen von Mikrorissen und anderen unerwünschten Nebeneffekten. Auch die Bearbeitungsgeschwindigkeiten mittels PEM sind wesentlich höher als bei den konventionellen Technologien.

... mehr zu:
»ECM »Electrochemical »PEM »Werkstück

Als bekannteste Applikation für die präzise elektrochemische Metallbearbeitung sei die Herstellung der Philishave Rasierkappen durch Philips genannt. Erst die PEM-Technik ermöglichte es, dieses hochpräzise Produkt effizient und qualitativ hochwertig herzustellen. Philips begann 1999 mit der Umstellung der gesamten Rasierkappenproduktion.

Prozessumstellung auf präzise elektrochemische Metallbearbeitung verspricht Rationalisierungseffekte

So konnte aus einem aufwändigen, 21 Arbeitsschritte umfassenden Produktionsprozess ein automatischer Vier-Schritte-Prozess werden. Heute werden mittels PEM jährlich etwa 80 Mio. Rasierkappen mit einer Präzision im µm-Bereich hergestellt.

Die präzise elektrochemische Metallbearbeitung, PEM, basiert auf dem elektrochemischen Grundprinzip der anodischen Auflösung, 1832 entdeckt und beschrieben von Michael Faraday: Werden zwei Metallstäbe in eine leitende Flüssigkeit (Elektrolyt) getaucht und eine Gleichspannung zwischen ihnen angelegt, fließt ein Gleichstrom zwischen beiden Stäben.

Der am Pluspol (Anode) angeklemmte Metallstab löst sich langsam auf, während der am Minuspol (Kathode) befestigte Stab sich nicht auflöst. Dieses Prinzip wird auch beim Elektropolieren angewendet.

Der russische Forscher W. Gussev entwickelte basierend auf den Erkenntnissen Faradays 1929 in seinem Labor den ersten elektrochemischen Prozess. In der Zeit zwischen den 30er- und 60er-Jahren wurde in den USA und in Russland weiter an den elektrochemischen Prozessen und deren industrieller Nutzung geforscht.

Anfang 1960 wurden in der UdSSR und in den USA die ersten elektrochemischen Prozesse (ECM = Electrochemical Machining) in der Luft- und Raumfahrtindustrie eingeführt. In den Siebzigern wurde auch in Europa das Electrochemical Machining auf Nischenmärkten (Luftfahrt und Energietechnik) übernommen.

Basis der Entwicklung war die Pulsed-ECM-Technik

Das klassische Electrochemcial Machining, kurz ECM, benutzt eine Formelektrode als Kathode (Minuspol) und das zu bearbeitende Werkstück als Anode (Pluspol). Wie in der Senkerosion wird die Formelektrode in der Z-Achse verfahren. Zwischen Formelektrode und Werkstück fließt ein Elektrolyt, der den Strom überträgt. Das Werkstück löst sich anodisch auf und passt sich der Form der Elektrode an. Die herausgelösten Metallbestandteile werden vom fließenden Elektrolyt weggespült.

Trotz vieler technologischer Vorteile konnte sich die ECM-Technologie in den 70er- und 80er-Jahren nicht gegen die damals präzisere Funkenerosion durchsetzen. Die eher geringe Präzision beschränkte ihren Einsatz auf Nischenanwendungen.

Die Entwicklung ging wegen der klaren technologischen Vorteile aber weiter. So entstand aus dem ECM das PECM. Das Pulsed ECM ermöglichte mit gepulstem Strom eine höhere Präzision des ECM-Verfahrens.

Das deutsch-niederländische Forschungsprojekt Spectrum, an dem die Heinrich-Heine-Universität Düsseldorf, die Freie Universität Brüssel, die Großkonzerne Philips und Bosch sowie das Consulting-Unternehmen Elsyca beteiligt waren, entwickelte das PECM-Verfahren weiter zum heutigen Precise Electrochemical Machining. Das kurz als PEM bezeichnete Verfahren zeichnet sich nach Überwindung der Entwicklungsschwierigkeiten als ein hochpräzises und wirtschaftliches elektrochemisches Metallbearbeitungsverfahren aus.

Schwingende Elektrode sorgt für hohe Präzision

Beim PEM-Verfahren wird, wie beim klassischen elektrochemischen Senken, das zu bearbeitende Werkstück anodisch (Pluspol) und die Formelektrode kathodisch (Minuspol) geschaltet. Ein Elektrolyt fließt zwischen Formelektrode und Werkstück, um den gepulsten Gleichstrom zwischen beiden Polen zu übertragen und die herausgelösten Metallbestandteile abzutransportieren.

Beim PEM schwingt jedoch die Formelektrode mit einer Frequenz von 10 bis 60 Hz in Z-Richtung. Dabei vergrößert und verkleinert sich der so genannte Reaktionsspalt periodisch.

Der Strom wird erst gepulst, wenn die Elektrode sehr nahe dem Werkstück ist. Danach öffnet sich der Reaktionsspalt und der verbrauchte Elektrolyt kann abtransportiert werden. So ist es möglich, hoch genaue Abbildungen und Abformungen in Serie zu erzeugen. Seit 2003 sind ausgereifte PEM-Maschinen auf dem freien Markt erhältlich, ein Beispiel dafür liefert der deutsch-französische Hersteller Pemtec.


Gute Zukunftsaussichten für die präzise elektrochemische Metallbearbeitung
Zusammenfassend lässt sich sagen: PEM ist ein elektrochemischer, kalter Senkerosionsprozess mit einer in Z-Richtung, vibrierenden Elektrode (Kathode). Ein gesteuerter gepulster Gleichstrom wird zwischen der Elektrode und dem zu bearbeitenden metallischen Werkstück angelegt und über ein Elektrolyt (NaNO3) übertragen. Hierbei löst sich das anodisch geschaltete Werkstück chemisch auf und passt sich der Form der nachgeführten Elektrode an. Das funktioniert ähnlich der Funkenerosionstechnik, speziell der Senkerosion.

Die klaren Vorteile des PEM-Verfahrens werden dazu führen, die Technik in großem Stil in der Serienbearbeitung von Metallteilen in verschiedenen innovationsfreundlichen Branchen und besonders in der Bearbeitung von hochfesten Legierungen und Umformwerkzeugen einzusetzen.

Die dazu noch notwendige Weiterentwicklung der PEM-Werkzeugmaschinen, vor allem hinsichtlich einer Implementierung von X-, Y- und C-Achsen, wird durch die zunehmenden Forderungen der Industrie innerhalb der nächsten drei bis fünf Jahre realisiert werden müssen.

Markus Gäckle ist Geschäftsführer der Primetec GmbH & Co. KG in 75242 Neuhausen.

Markus Gäckle | MM MaschinenMarkt
Weitere Informationen:
http://www.maschinenmarkt.vogel.de/themenkanaele/produktion/spanende_fertigung/articles/124644/

Weitere Berichte zu: ECM Electrochemical PEM Werkstück

Weitere Nachrichten aus der Kategorie Maschinenbau:

nachricht Gewicht von Robomotion-Greifer um 60 Prozent reduziert
31.07.2017 | Fraunhofer-Institut für Produktionstechnik und Automatisierung IPA

nachricht Assistenzsysteme für die Blechumformung
28.07.2017 | Rheinisch-Westfälische Technische Hochschule Aachen

Alle Nachrichten aus der Kategorie: Maschinenbau >>>

Die aktuellsten Pressemeldungen zum Suchbegriff Innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Unterwasserroboter soll nach einem Jahr in der arktischen Tiefsee auftauchen

Am Dienstag, den 22. August wird das Forschungsschiff Polarstern im norwegischen Tromsø zu einer besonderen Expedition in die Arktis starten: Der autonome Unterwasserroboter TRAMPER soll nach einem Jahr Einsatzzeit am arktischen Tiefseeboden auftauchen. Dieses Gerät und weitere robotische Systeme, die Tiefsee- und Weltraumforscher im Rahmen der Helmholtz-Allianz ROBEX gemeinsam entwickelt haben, werden nun knapp drei Wochen lang unter Realbedingungen getestet. ROBEX hat das Ziel, neue Technologien für die Erkundung schwer erreichbarer Gebiete mit extremen Umweltbedingungen zu entwickeln.

„Auftauchen wird der TRAMPER“, sagt Dr. Frank Wenzhöfer vom Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung (AWI) selbstbewusst. Der...

Im Focus: Mit Barcodes der Zellentwicklung auf der Spur

Darüber, wie sich Blutzellen entwickeln, existieren verschiedene Auffassungen – sie basieren jedoch fast ausschließlich auf Experimenten, die lediglich Momentaufnahmen widerspiegeln. Wissenschaftler des Deutschen Krebsforschungszentrums stellen nun im Fachjournal Nature eine neue Technik vor, mit der sich das Geschehen dynamisch erfassen lässt: Mithilfe eines „Zufallsgenerators“ versehen sie Blutstammzellen mit genetischen Barcodes und können so verfolgen, welche Zelltypen aus der Stammzelle hervorgehen. Diese Technik erlaubt künftig völlig neue Einblicke in die Entwicklung unterschiedlicher Gewebe sowie in die Krebsentstehung.

Wie entsteht die Vielzahl verschiedener Zelltypen im Blut? Diese Frage beschäftigt Wissenschaftler schon lange. Nach der klassischen Vorstellung fächern sich...

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Forscher entwickeln maisförmigen Arzneimittel-Transporter zum Inhalieren

Er sieht aus wie ein Maiskolben, ist winzig wie ein Bakterium und kann einen Wirkstoff direkt in die Lungenzellen liefern: Das zylinderförmige Vehikel für Arzneistoffe, das Pharmazeuten der Universität des Saarlandes entwickelt haben, kann inhaliert werden. Professor Marc Schneider und sein Team machen sich dabei die körpereigene Abwehr zunutze: Makrophagen, die Fresszellen des Immunsystems, fressen den gesundheitlich unbedenklichen „Nano-Mais“ und setzen dabei den in ihm enthaltenen Wirkstoff frei. Bei ihrer Forschung arbeiteten die Pharmazeuten mit Forschern der Medizinischen Fakultät der Saar-Uni, des Leibniz-Instituts für Neue Materialien und der Universität Marburg zusammen Ihre Forschungsergebnisse veröffentlichten die Wissenschaftler in der Fachzeitschrift Advanced Healthcare Materials. DOI: 10.1002/adhm.201700478

Ein Medikament wirkt nur, wenn es dort ankommt, wo es wirken soll. Wird ein Mittel inhaliert, muss der Wirkstoff in der Lunge zuerst die Hindernisse...

Im Focus: Exotische Quantenzustände: Physiker erzeugen erstmals optische „Töpfe" für ein Super-Photon

Physikern der Universität Bonn ist es gelungen, optische Mulden und komplexere Muster zu erzeugen, in die das Licht eines Bose-Einstein-Kondensates fließt. Die Herstellung solch sehr verlustarmer Strukturen für Licht ist eine Voraussetzung für komplexe Schaltkreise für Licht, beispielsweise für die Quanteninformationsverarbeitung einer neuen Computergeneration. Die Wissenschaftler stellen nun ihre Ergebnisse im Fachjournal „Nature Photonics“ vor.

Lichtteilchen (Photonen) kommen als winzige, unteilbare Portionen vor. Viele Tausend dieser Licht-Portionen lassen sich zu einem einzigen Super-Photon...

Alle Focus-News des Innovations-reports >>>

Anzeige

Anzeige

IHR
JOB & KARRIERE
SERVICE
im innovations-report
in Kooperation mit academics
Veranstaltungen

European Conference on Eye Movements: Internationale Tagung an der Bergischen Universität Wuppertal

18.08.2017 | Veranstaltungen

Einblicke ins menschliche Denken

17.08.2017 | Veranstaltungen

Eröffnung der INC.worX-Erlebniswelt während der Technologie- und Innovationsmanagement-Tagung 2017

16.08.2017 | Veranstaltungen

 
VideoLinks
B2B-VideoLinks
Weitere VideoLinks >>>
Aktuelle Beiträge

Eine Karte der Zellkraftwerke

18.08.2017 | Biowissenschaften Chemie

Chronische Infektionen aushebeln: Ein neuer Wirkstoff auf dem Weg in die Entwicklung

18.08.2017 | Biowissenschaften Chemie

Computer mit Köpfchen

18.08.2017 | Informationstechnologie